An anesthesiologist's guide to hypoxic pulmonary vasoconstriction: implications for managing single-lung anesthesia and atelectasis - PubMed (original) (raw)
Review
An anesthesiologist's guide to hypoxic pulmonary vasoconstriction: implications for managing single-lung anesthesia and atelectasis
Jayan Nagendran et al. Curr Opin Anaesthesiol. 2006 Feb.
Abstract
Purpose of the review: Hypoxic pulmonary vasoconstriction is the pulmonary circulation's homeostatic mechanism for matching regional perfusion to ventilation and optimizing systemic PaO2. The role of hypoxic pulmonary vasoconstriction in anesthesiology is reviewed.
Recent findings: In hypoxic pulmonary vasoconstriction, airway hypoxia causes resistance pulmonary arteries to constrict, diverting blood to better-oxygenated alveoli. Hypoxic pulmonary vasoconstriction optimizes O2 uptake in atelectasis, pneumonia, asthma, and adult respiratory distress syndrome. During single-lung anesthesia, hypoxic pulmonary vasoconstriction helps maintain systemic oxygenation. When hypoxic pulmonary vasoconstriction is weak, systemic hypoxemia is exacerbated. Although not widely used, the peripheral chemoreceptor agonist almitrine enhances hypoxic pulmonary vasoconstriction and improves PaO2 during single-lung anesthesia. The mechanism of hypoxic pulmonary vasoconstriction involves a redox-based O2 sensor within pulmonary artery smooth muscle cells. Pulmonary artery smooth muscle cells mitochondria vary production of reactive O2 species in proportion to PaO2. Hypoxic withdrawal of these redox second messengers inhibits voltage-gated potassium channels, depolarizing the pulmonary artery smooth muscle cells. Depolarization activates L-type calcium channels, increasing cytosolic calcium and triggering hypoxic pulmonary vasoconstriction.
Summary: An understanding of hypoxic pulmonary vasoconstriction is clinically relevant for anesthesiologists. Randomized clinical trials with robust endpoints are required to assess strategies for enhancing hypoxic pulmonary vasoconstriction in thoracic surgery patients.
Similar articles
- Hypoxic Pulmonary Vasoconstriction: From Molecular Mechanisms to Medicine.
Dunham-Snary KJ, Wu D, Sykes EA, Thakrar A, Parlow LRG, Mewburn JD, Parlow JL, Archer SL. Dunham-Snary KJ, et al. Chest. 2017 Jan;151(1):181-192. doi: 10.1016/j.chest.2016.09.001. Epub 2016 Sep 16. Chest. 2017. PMID: 27645688 Free PMC article. Review. - Hypoxic pulmonary vasoconstriction: redox regulation of O2-sensitive K+ channels by a mitochondrial O2-sensor in resistance artery smooth muscle cells.
Michelakis ED, Thébaud B, Weir EK, Archer SL. Michelakis ED, et al. J Mol Cell Cardiol. 2004 Dec;37(6):1119-36. doi: 10.1016/j.yjmcc.2004.09.007. J Mol Cell Cardiol. 2004. PMID: 15572043 Review. - Preferential expression and function of voltage-gated, O2-sensitive K+ channels in resistance pulmonary arteries explains regional heterogeneity in hypoxic pulmonary vasoconstriction: ionic diversity in smooth muscle cells.
Archer SL, Wu XC, Thébaud B, Nsair A, Bonnet S, Tyrrell B, McMurtry MS, Hashimoto K, Harry G, Michelakis ED. Archer SL, et al. Circ Res. 2004 Aug 6;95(3):308-18. doi: 10.1161/01.RES.0000137173.42723.fb. Epub 2004 Jun 24. Circ Res. 2004. PMID: 15217912 - Molecular identification of O2 sensors and O2-sensitive potassium channels in the pulmonary circulation.
Archer SL, Weir EK, Reeve HL, Michelakis E. Archer SL, et al. Adv Exp Med Biol. 2000;475:219-40. doi: 10.1007/0-306-46825-5_21. Adv Exp Med Biol. 2000. PMID: 10849663 Review. - The mechanism(s) of hypoxic pulmonary vasoconstriction: potassium channels, redox O(2) sensors, and controversies.
Archer S, Michelakis E. Archer S, et al. News Physiol Sci. 2002 Aug;17:131-7. doi: 10.1152/nips.01388.2002. News Physiol Sci. 2002. PMID: 12136039 Review.
Cited by
- Hypoxic pulmonary vasoconstriction, carotid body function and erythropoietin production in adult rats perinatally exposed to hyperoxia.
Prieto-Lloret J, Ramirez M, Olea E, Moral-Sanz J, Cogolludo A, Castañeda J, Yubero S, Agapito T, Gomez-Niño A, Rocher A, Rigual R, Obeso A, Perez-Vizcaino F, González C. Prieto-Lloret J, et al. J Physiol. 2015 Jun 1;593(11):2459-77. doi: 10.1113/JP270274. Epub 2015 May 15. J Physiol. 2015. PMID: 25833164 Free PMC article. - Evaluation of oxygen administration in cesarean section under spinal anesthesia via lung ultrasound and the oxygen reserve index.
Canıtez MA, Ayoğlu H, Okyay RD, Bollucuoğlu K, Baytar Ç, Çeviker G, Küçükosman G, İncegül BG, Pişkin Ö. Canıtez MA, et al. BMC Anesthesiol. 2024 Aug 8;24(1):277. doi: 10.1186/s12871-024-02669-5. BMC Anesthesiol. 2024. PMID: 39118011 Free PMC article. Clinical Trial. - Causes, Effects and Methods of Monitoring Gas Exchange Disturbances during Equine General Anaesthesia.
Stefanik E, Drewnowska O, Lisowska B, Turek B. Stefanik E, et al. Animals (Basel). 2021 Jul 9;11(7):2049. doi: 10.3390/ani11072049. Animals (Basel). 2021. PMID: 34359177 Free PMC article. Review. - Correlation of lung collapse and gas exchange - a computer tomographic study in sheep and pigs with atelectasis in otherwise normal lungs.
Wolf SJ, Reske AP, Hammermüller S, Costa EL, Spieth PM, Hepp P, Carvalho AR, Kraßler J, Wrigge H, Amato MB, Reske AW. Wolf SJ, et al. PLoS One. 2015 Aug 10;10(8):e0135272. doi: 10.1371/journal.pone.0135272. eCollection 2015. PLoS One. 2015. PMID: 26258686 Free PMC article. - A mitochondrial redox oxygen sensor in the pulmonary vasculature and ductus arteriosus.
Dunham-Snary KJ, Hong ZG, Xiong PY, Del Paggio JC, Herr JE, Johri AM, Archer SL. Dunham-Snary KJ, et al. Pflugers Arch. 2016 Jan;468(1):43-58. doi: 10.1007/s00424-015-1736-y. Epub 2015 Sep 23. Pflugers Arch. 2016. PMID: 26395471 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials