Accelerated progression of kaolin-induced hydrocephalus in aquaporin-4-deficient mice - PubMed (original) (raw)
. 2006 Dec;26(12):1527-37.
doi: 10.1038/sj.jcbfm.9600306. Epub 2006 Mar 22.
Affiliations
- PMID: 16552421
- DOI: 10.1038/sj.jcbfm.9600306
Accelerated progression of kaolin-induced hydrocephalus in aquaporin-4-deficient mice
Orin Bloch et al. J Cereb Blood Flow Metab. 2006 Dec.
Abstract
Hydrocephalus is caused by an imbalance in cerebrospinal fluid (CSF) production and absorption, resulting in excess ventricular fluid accumulation and neurologic impairment. Current therapy for hydrocephalus involves surgical diversion of excess ventricular fluid. The water-transporting protein aquaporin-4 (AQP4) is expressed at the brain-CSF and blood-brain barriers. Here, we provide evidence for AQP4-facilitated CSF absorption in hydrocephalus by a transparenchymal pathway into the cerebral vasculature. A mouse model of obstructive hydrocephalus was created by injecting kaolin (2.5 mg/mouse) into the cisterna magna. Intracranial pressure (ICP) was approximately 5 mm Hg and ventricular size <0.3 mm(3) in control mice. Lateral ventricle volume increased to 3.7+/-0.5 and 5.1+/-0.5 mm(3) in AQP4 null mice at 3 and 5 days after injection, respectively, significantly greater than 2.6+/-0.3 and 3.5+/-0.5 mm(3) in wildtype mice (P<0.005). The corresponding ICP was 22+/-2 mm Hg at 3 days in AQP4 null mice, significantly greater than 14+/-1 mm Hg in wildtype mice (P<0.005). Brain parenchymal water content increased by 2% to 3% by 3 days, corresponding to approximately 50 muL of fluid, indicating backflow of CSF from the ventricle into the parenchymal extracellular space. A multi-compartment model of hydrocephalus based on experimental data from wildtype mice accurately reproduced the greater severity of hydrocephalus in AQP4 null mice, and predicted a much reduced severity if AQP4 expression/function were increased. Our results indicate a significant role for AQP4-mediated transparenchymal CSF absorption in hydrocephalus and provide a rational basis for evaluation of AQP4 induction as a nonsurgical therapy for hydrocephalus.
Similar articles
- Characterization of juvenile and young adult mice following induction of hydrocephalus with kaolin.
Lopes Lda S, Slobodian I, Del Bigio MR. Lopes Lda S, et al. Exp Neurol. 2009 Sep;219(1):187-96. doi: 10.1016/j.expneurol.2009.05.015. Epub 2009 May 19. Exp Neurol. 2009. PMID: 19460371 - Aquaporin-4 maintains ependymal integrity in adult mice.
Li X, Kong H, Wu W, Xiao M, Sun X, Hu G. Li X, et al. Neuroscience. 2009 Aug 4;162(1):67-77. doi: 10.1016/j.neuroscience.2009.04.044. Epub 2009 Apr 22. Neuroscience. 2009. PMID: 19393298 - Studies of mdx mice.
Vajda Z, Pedersen M, Doczi T, Sulyok E, Nielsen S. Vajda Z, et al. Neuroscience. 2004;129(4):993-8. doi: 10.1016/j.neuroscience.2004.08.055. Neuroscience. 2004. PMID: 15561414 Review. - Altered cellular localization of aquaporin-1 in experimental hydrocephalus in mice and reduced ventriculomegaly in aquaporin-1 deficiency.
Wang D, Nykanen M, Yang N, Winlaw D, North K, Verkman AS, Owler BK. Wang D, et al. Mol Cell Neurosci. 2011 Jan;46(1):318-24. doi: 10.1016/j.mcn.2010.10.003. Epub 2010 Oct 30. Mol Cell Neurosci. 2011. PMID: 21040788 - New insights into water transport and edema in the central nervous system from phenotype analysis of aquaporin-4 null mice.
Manley GT, Binder DK, Papadopoulos MC, Verkman AS. Manley GT, et al. Neuroscience. 2004;129(4):983-91. doi: 10.1016/j.neuroscience.2004.06.088. Neuroscience. 2004. PMID: 15561413 Review.
Cited by
- Live cell analysis of aquaporin-4 m1/m23 interactions and regulated orthogonal array assembly in glial cells.
Crane JM, Bennett JL, Verkman AS. Crane JM, et al. J Biol Chem. 2009 Dec 18;284(51):35850-60. doi: 10.1074/jbc.M109.071670. J Biol Chem. 2009. PMID: 19843522 Free PMC article. - Aquaporin-4-dependent glymphatic solute transport in the rodent brain.
Mestre H, Hablitz LM, Xavier AL, Feng W, Zou W, Pu T, Monai H, Murlidharan G, Castellanos Rivera RM, Simon MJ, Pike MM, Plá V, Du T, Kress BT, Wang X, Plog BA, Thrane AS, Lundgaard I, Abe Y, Yasui M, Thomas JH, Xiao M, Hirase H, Asokan A, Iliff JJ, Nedergaard M. Mestre H, et al. Elife. 2018 Dec 18;7:e40070. doi: 10.7554/eLife.40070. Elife. 2018. PMID: 30561329 Free PMC article. - AQP1 and AQP4 Contribution to Cerebrospinal Fluid Homeostasis.
Trillo-Contreras JL, Toledo-Aral JJ, Echevarría M, Villadiego J. Trillo-Contreras JL, et al. Cells. 2019 Feb 24;8(2):197. doi: 10.3390/cells8020197. Cells. 2019. PMID: 30813473 Free PMC article. - Aquaporin Water Channels and Hydrocephalus.
Verkman AS, Tradtrantip L, Smith AJ, Yao X. Verkman AS, et al. Pediatr Neurosurg. 2017;52(6):409-416. doi: 10.1159/000452168. Epub 2016 Dec 16. Pediatr Neurosurg. 2017. PMID: 27978530 Free PMC article. Review. - The pathogenesis of idiopathic normal pressure hydrocephalus based on the understanding of AQP1 and AQP4.
Zhao Z, He J, Chen Y, Wang Y, Wang C, Tan C, Liao J, Xiao G. Zhao Z, et al. Front Mol Neurosci. 2022 Sep 20;15:952036. doi: 10.3389/fnmol.2022.952036. eCollection 2022. Front Mol Neurosci. 2022. PMID: 36204139 Free PMC article. Review.
Publication types
MeSH terms
Substances
Grants and funding
- DK35124/DK/NIDDK NIH HHS/United States
- DK72517/DK/NIDDK NIH HHS/United States
- EB00415/EB/NIBIB NIH HHS/United States
- EY13574/EY/NEI NIH HHS/United States
- HL59198/HL/NHLBI NIH HHS/United States
- HL73856/HL/NHLBI NIH HHS/United States
LinkOut - more resources
Full Text Sources
Medical