Do transposable elements really contribute to proteomes? - PubMed (original) (raw)
Review
Do transposable elements really contribute to proteomes?
Valer Gotea et al. Trends Genet. 2006 May.
Abstract
Recent studies indicate that the initial classification of transposable elements (TEs) as 'useless', 'selfish' or 'junk' pieces of DNA is not an accurate one. TEs seem to have complex regulatory functions and contribute to the coding regions of many genes. Because this contribution had been documented only at transcript level, we searched for evidence that would also support the translation of TE cassettes. Our findings suggest that the proportion of proteins with TE-encoded fragments (approximately 0.1%), although probably underestimated, is much less than what the data at transcript level suggest (approximately 4%). In all cases, the TE cassettes are derived from old TEs, consistent with the idea that incorporation (exaptation) of TE fragments into functional proteins requires long evolutionary periods. We therefore argue that functional proteins are unlikely to contain TE cassettes derived from young TEs, the role of which is probably limited to regulatory functions.
Similar articles
- Transposable element fragments in protein-coding regions and their contributions to human functional proteins.
Wu M, Li L, Sun Z. Wu M, et al. Gene. 2007 Oct 15;401(1-2):165-71. doi: 10.1016/j.gene.2007.07.012. Epub 2007 Jul 26. Gene. 2007. PMID: 17716834 - Birth and death of genes promoted by transposable elements in Oryza sativa.
Sakai H, Tanaka T, Itoh T. Sakai H, et al. Gene. 2007 May 1;392(1-2):59-63. doi: 10.1016/j.gene.2006.11.010. Epub 2006 Nov 23. Gene. 2007. PMID: 17210233 - Epigenetic regulation and functional exaptation of transposable elements in higher plants.
Cui X, Cao X. Cui X, et al. Curr Opin Plant Biol. 2014 Oct;21:83-88. doi: 10.1016/j.pbi.2014.07.001. Epub 2014 Jul 25. Curr Opin Plant Biol. 2014. PMID: 25061895 Review. - Transposable elements and vertebrate protein diversity.
Lorenc A, Makałowski W. Lorenc A, et al. Genetica. 2003 Jul;118(2-3):183-91. Genetica. 2003. PMID: 12868608 - Epigenetic regulation of Mammalian genomes by transposable elements.
Huda A, Jordan IK. Huda A, et al. Ann N Y Acad Sci. 2009 Oct;1178:276-84. doi: 10.1111/j.1749-6632.2009.05007.x. Ann N Y Acad Sci. 2009. PMID: 19845643 Review.
Cited by
- The transcript repeat element: the human Alu sequence as a component of gene networks influencing cancer.
Moolhuijzen P, Kulski JK, Dunn DS, Schibeci D, Barrero R, Gojobori T, Bellgard M. Moolhuijzen P, et al. Funct Integr Genomics. 2010 Aug;10(3):307-19. doi: 10.1007/s10142-010-0168-1. Funct Integr Genomics. 2010. PMID: 20393868 Review. - Functional persistence of exonized mammalian-wide interspersed repeat elements (MIRs).
Krull M, Petrusma M, Makalowski W, Brosius J, Schmitz J. Krull M, et al. Genome Res. 2007 Aug;17(8):1139-45. doi: 10.1101/gr.6320607. Epub 2007 Jul 10. Genome Res. 2007. PMID: 17623809 Free PMC article. - The birth of new exons: mechanisms and evolutionary consequences.
Sorek R. Sorek R. RNA. 2007 Oct;13(10):1603-8. doi: 10.1261/rna.682507. Epub 2007 Aug 20. RNA. 2007. PMID: 17709368 Free PMC article. Review. - Repeated recruitment of LTR retrotransposons as promoters by the anti-apoptotic locus NAIP during mammalian evolution.
Romanish MT, Lock WM, van de Lagemaat LN, Dunn CA, Mager DL. Romanish MT, et al. PLoS Genet. 2007 Jan 12;3(1):e10. doi: 10.1371/journal.pgen.0030010. Epub 2006 Dec 6. PLoS Genet. 2007. PMID: 17222062 Free PMC article. - Few SINEs of life: Alu elements have little evidence for biological relevance despite elevated translation.
Martinez-Gomez L, Abascal F, Jungreis I, Pozo F, Kellis M, Mudge JM, Tress ML. Martinez-Gomez L, et al. NAR Genom Bioinform. 2020 Mar;2(1):lqz023. doi: 10.1093/nargab/lqz023. Epub 2019 Dec 19. NAR Genom Bioinform. 2020. PMID: 31886458 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases