Sonic hedgehog regulates Gli activator and repressor functions with spatial and temporal precision in the mid/hindbrain region - PubMed (original) (raw)
. 2006 May;133(9):1799-809.
doi: 10.1242/dev.02339. Epub 2006 Mar 29.
Affiliations
- PMID: 16571630
- DOI: 10.1242/dev.02339
Sonic hedgehog regulates Gli activator and repressor functions with spatial and temporal precision in the mid/hindbrain region
Sandra Blaess et al. Development. 2006 May.
Abstract
The midbrain and anterior hindbrain offer an ideal system in which to study the coordination of tissue growth and patterning in three dimensions. Two organizers that control anteroposterior (AP) and dorsoventral (DV) development are known, and the regulation of AP patterning by Fgf8 has been studied in detail. Much less is known about the mechanisms that control mid/hindbrain development along the DV axis. Using a conditional mutagenesis approach, we have determined how the ventrally expressed morphogen sonic hedgehog (Shh) directs mid/hindbrain development over time and space through positive regulation of the Gli activators (GliA) and inhibition of the Gli3 repressor (Gli3R). We have discovered that Gli2A-mediated Shh signaling sequentially induces ventral neurons along the medial to lateral axis, and only before midgestation. Unlike in the spinal cord, Shh signaling plays a major role in patterning of dorsal structures (tectum and cerebellum). This function of Shh signaling involves inhibition of Gli3R and continues after midgestation. Gli3R levels also regulate overall growth of the mid/hindbrain region, and this largely involves the suppression of cell death. Furthermore, inhibition of Gli3R by Shh signaling is required to sustain expression of the AP organizer gene Fgf8. Thus, the precise spatial and temporal regulation of Gli2A and Gli3R by Shh is instrumental in coordinating mid/hindbrain development in three dimensions.
Similar articles
- Gli2 and Gli3 play distinct roles in the dorsoventral patterning of the mouse hindbrain.
Lebel M, Mo R, Shimamura K, Hui CC. Lebel M, et al. Dev Biol. 2007 Feb 1;302(1):345-55. doi: 10.1016/j.ydbio.2006.08.005. Epub 2006 Aug 9. Dev Biol. 2007. PMID: 17026983 - Sonic hedgehog signaling regulates Gli3 processing, mesenchymal proliferation, and differentiation during mouse lung organogenesis.
Li Y, Zhang H, Choi SC, Litingtung Y, Chiang C. Li Y, et al. Dev Biol. 2004 Jun 1;270(1):214-31. doi: 10.1016/j.ydbio.2004.03.009. Dev Biol. 2004. PMID: 15136151 - Wnt canonical pathway restricts graded Shh/Gli patterning activity through the regulation of Gli3 expression.
Alvarez-Medina R, Cayuso J, Okubo T, Takada S, Martí E. Alvarez-Medina R, et al. Development. 2008 Jan;135(2):237-47. doi: 10.1242/dev.012054. Epub 2007 Dec 5. Development. 2008. PMID: 18057099 - Isthmus organizer for midbrain and hindbrain development.
Nakamura H, Katahira T, Matsunaga E, Sato T. Nakamura H, et al. Brain Res Brain Res Rev. 2005 Sep;49(2):120-6. doi: 10.1016/j.brainresrev.2004.10.005. Epub 2005 Jan 21. Brain Res Brain Res Rev. 2005. PMID: 16111543 Review. - Induction and specification of midbrain dopaminergic cells: focus on SHH, FGF8, and TGF-beta.
Roussa E, Krieglstein K. Roussa E, et al. Cell Tissue Res. 2004 Oct;318(1):23-33. doi: 10.1007/s00441-004-0916-4. Epub 2004 Aug 19. Cell Tissue Res. 2004. PMID: 15322912 Review.
Cited by
- The Eya1 phosphatase promotes Shh signaling during hindbrain development and oncogenesis.
Eisner A, Pazyra-Murphy MF, Durresi E, Zhou P, Zhao X, Chadwick EC, Xu PX, Hillman RT, Scott MP, Greenberg ME, Segal RA. Eisner A, et al. Dev Cell. 2015 Apr 6;33(1):22-35. doi: 10.1016/j.devcel.2015.01.033. Epub 2015 Mar 26. Dev Cell. 2015. PMID: 25816987 Free PMC article. - 22q11 Gene dosage establishes an adaptive range for sonic hedgehog and retinoic acid signaling during early development.
Maynard TM, Gopalakrishna D, Meechan DW, Paronett EM, Newbern JM, LaMantia AS. Maynard TM, et al. Hum Mol Genet. 2013 Jan 15;22(2):300-12. doi: 10.1093/hmg/dds429. Epub 2012 Oct 16. Hum Mol Genet. 2013. PMID: 23077214 Free PMC article. - A novel role for FOXA2 and SHH in organizing midbrain signaling centers.
Bayly RD, Brown CY, Agarwala S. Bayly RD, et al. Dev Biol. 2012 Sep 1;369(1):32-42. doi: 10.1016/j.ydbio.2012.06.018. Epub 2012 Jun 27. Dev Biol. 2012. PMID: 22750257 Free PMC article. - Gli2 gene-environment interactions contribute to the etiological complexity of holoprosencephaly: evidence from a mouse model.
Heyne GW, Everson JL, Ansen-Wilson LJ, Melberg CG, Fink DM, Parins KF, Doroodchi P, Ulschmid CM, Lipinski RJ. Heyne GW, et al. Dis Model Mech. 2016 Nov 1;9(11):1307-1315. doi: 10.1242/dmm.026328. Epub 2016 Sep 1. Dis Model Mech. 2016. PMID: 27585885 Free PMC article. - Context-dependent signal integration by the GLI code: the oncogenic load, pathways, modifiers and implications for cancer therapy.
Aberger F, Ruiz i Altaba A. Aberger F, et al. Semin Cell Dev Biol. 2014 Sep;33(100):93-104. doi: 10.1016/j.semcdb.2014.05.003. Epub 2014 May 19. Semin Cell Dev Biol. 2014. PMID: 24852887 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous