Purified IP3 receptor from smooth muscle forms an IP3 gated and heparin sensitive Ca2+ channel in planar bilayers - PubMed (original) (raw)

Purified IP3 receptor from smooth muscle forms an IP3 gated and heparin sensitive Ca2+ channel in planar bilayers

M Mayrleitner et al. Cell Calcium. 1991 Jul.

Abstract

The IP3 receptor of aortic smooth muscle, purified to near homogeneity, was incorporated into vesicle derived planar bilayers. The receptor forms channels which are gated by Ins(1,4,5)P3 (0.5 microM) and are permeable to Ca2+ (Ca2+ greater than K+ much greater than Cl-). Channel activation is specific for Ins(1,4,5)P3. Essentially no activation of channel currents was found for Ins(1,3,4)P3 or Ins(1,3,4,5)P4 at 10 microM. Heparin (25 micrograms/ml) blocked induced currents completely at all levels of activity while ATP (50 microM) increased mean current levels 2 to 4 fold. Ins(1,4,5)P3 activated mean currents increased non-linearly with voltage above about -40 mV applied voltage. Mean current levels could be reversibly adjusted by voltage to the single channel level (0 to -50 mV) or to macroscopic levels (-50 to -100 mV) over periods exceeding 1 h. Single channel events are characterized by fast transitions between predominantly non-resolved sublevels. Estimates of maximal single event currents yield a slope conductance of 32 +/- 4 pS (0 to -60 mV, 50 mM CaCl2). Thus, the purified IP3 receptor forms a channel with functional properties characteristic of IP3 triggered Ca2+ release.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources