Identification of a putative alphavirus receptor on mouse neural cells - PubMed (original) (raw)

Comparative Study

Identification of a putative alphavirus receptor on mouse neural cells

S Ubol et al. J Virol. 1991 Dec.

Abstract

Alphaviruses replicate in a wide variety of cells in vitro. The prototype alphavirus, Sindbis virus, causes an age-dependent encephalitis in mice and serves as an important model system for the study of alphavirus neurovirulence. To begin to understand the role of cellular virus receptors in the pathogenesis of Sindbis virus infection, we developed an anti-idiotypic antibody made in rabbits against a neutralizing monoclonal antibody specific for the E2 surface glycoprotein. The anti-idiotypic antibody (anti-Id 209) bound to N18 mouse neuroblastoma cells and inhibited adsorption of 35S-labeled virus by 50%. Binding of anti-Id 209 was inhibited by pretreatment of N18 cells with various proteases but not with neuraminidase or phospholipase, while virus binding was inhibited by pretreatment with phospholipase as well as protease. Anti-Id 209 precipitated proteins of 110 and 74 kDa from N18 cells intrinsically labeled with [35S]methionine. N18 cells grow with two phenotypes in culture, and immunoprecipitation of 125I-surface-labeled cells showed that the 74-kDa protein was present on loosely adherent cells growing in aggregates, while the 110-kDa protein was present in smaller amounts on firmly adherent cells growing as a monolayer. Analysis of brain cells from newborn mice by flow cytometry showed that all cells expressed the receptor protein at birth, but by 4 days after birth half of the cells had ceased receptor expression. A survey of other cell lines showed the protein to be present on murine fibroblastic and other rodent neuroblastoma cell lines but rarely on human neural or nonneural cell lines. These studies suggest that one of the receptors for Sindbis virus on mouse neural cells is a protein that is regulated during development of the nervous system. Developmental down-regulation of receptor protein expression may contribute to the age-dependent nature of susceptibility of mice to fatal alphavirus encephalitis.

PubMed Disclaimer

References

    1. J Immunol Methods. 1988 Oct 4;113(1):101-11 - PubMed
    1. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2424-8 - PubMed
    1. Cell. 1989 Mar 10;56(5):839-47 - PubMed
    1. Adv Virus Res. 1989;36:255-71 - PubMed
    1. Lab Invest. 1988 May;58(5):503-9 - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources