A framework for evaluating image segmentation algorithms - PubMed (original) (raw)
A framework for evaluating image segmentation algorithms
Jayaram K Udupa et al. Comput Med Imaging Graph. 2006 Mar.
Abstract
The purpose of this paper is to describe a framework for evaluating image segmentation algorithms. Image segmentation consists of object recognition and delineation. For evaluating segmentation methods, three factors-precision (reliability), accuracy (validity), and efficiency (viability)-need to be considered for both recognition and delineation. To assess precision, we need to choose a figure of merit, repeat segmentation considering all sources of variation, and determine variations in figure of merit via statistical analysis. It is impossible usually to establish true segmentation. Hence, to assess accuracy, we need to choose a surrogate of true segmentation and proceed as for precision. In determining accuracy, it may be important to consider different 'landmark' areas of the structure to be segmented depending on the application. To assess efficiency, both the computational and the user time required for algorithm training and for algorithm execution should be measured and analyzed. Precision, accuracy, and efficiency factors have an influence on one another. It is difficult to improve one factor without affecting others. Segmentation methods must be compared based on all three factors, as illustrated in an example wherein two methods are compared in a particular application domain. The weight given to each factor depends on application.
Similar articles
- Toward objective evaluation of image segmentation algorithms.
Unnikrishnan R, Pantofaru C, Hebert M. Unnikrishnan R, et al. IEEE Trans Pattern Anal Mach Intell. 2007 Jun;29(6):929-44. doi: 10.1109/TPAMI.2007.1046. IEEE Trans Pattern Anal Mach Intell. 2007. PMID: 17431294 - Real-time 3D interactive segmentation of echocardiographic data through user-based deformation of B-spline explicit active surfaces.
Barbosa D, Heyde B, Cikes M, Dietenbeck T, Claus P, Friboulet D, Bernard O, D'hooge J. Barbosa D, et al. Comput Med Imaging Graph. 2014 Jan;38(1):57-67. doi: 10.1016/j.compmedimag.2013.10.002. Epub 2013 Oct 22. Comput Med Imaging Graph. 2014. PMID: 24332441 - Mutual information in coupled multi-shape model for medical image segmentation.
Tsai A, Wells W, Tempany C, Grimson E, Willsky A. Tsai A, et al. Med Image Anal. 2004 Dec;8(4):429-45. doi: 10.1016/j.media.2004.01.003. Med Image Anal. 2004. PMID: 15567707 - Brain tissue segmentation using fuzzy clustering techniques.
Sucharitha M, Geetha KP. Sucharitha M, et al. Technol Health Care. 2015;23(5):571-80. doi: 10.3233/THC-151012. Technol Health Care. 2015. PMID: 26410118 - [Medical image segmentation techniques].
Li J, Zhu S, Bin H. Li J, et al. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2006 Aug;23(4):891-4. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2006. PMID: 17002132 Review. Chinese.
Cited by
- An enhanced random walk algorithm for delineation of head and neck cancers in PET studies.
Stefano A, Vitabile S, Russo G, Ippolito M, Sabini MG, Sardina D, Gambino O, Pirrone R, Ardizzone E, Gilardi MC. Stefano A, et al. Med Biol Eng Comput. 2017 Jun;55(6):897-908. doi: 10.1007/s11517-016-1571-0. Epub 2016 Sep 16. Med Biol Eng Comput. 2017. PMID: 27638108 - Computer Vision Techniques for Transcatheter Intervention.
Zhao F, Xie X, Roach M. Zhao F, et al. IEEE J Transl Eng Health Med. 2015 Jun 18;3:1900331. doi: 10.1109/JTEHM.2015.2446988. eCollection 2015. IEEE J Transl Eng Health Med. 2015. PMID: 27170893 Free PMC article. - On the evaluation of segmentation editing tools.
Heckel F, Moltz JH, Meine H, Geisler B, Kießling A, D'Anastasi M, Dos Santos DP, Theruvath AJ, Hahn HK. Heckel F, et al. J Med Imaging (Bellingham). 2014 Oct;1(3):034005. doi: 10.1117/1.JMI.1.3.034005. Epub 2014 Nov 14. J Med Imaging (Bellingham). 2014. PMID: 26158063 Free PMC article. - Improved assessment of multiple sclerosis lesion segmentation agreement via detection and outline error estimates.
Wack DS, Dwyer MG, Bergsland N, Di Perri C, Ranza L, Hussein S, Ramasamy D, Poloni G, Zivadinov R. Wack DS, et al. BMC Med Imaging. 2012 Jul 19;12:17. doi: 10.1186/1471-2342-12-17. BMC Med Imaging. 2012. PMID: 22812697 Free PMC article. - Rigid model-based 3D segmentation of the bones of joints in MR and CT images for motion analysis.
Liu J, Udupa JK, Saha PK, Odhner D, Hirsch BE, Siegler S, Simon S, Winkelstein BA. Liu J, et al. Med Phys. 2008 Aug;35(8):3637-49. doi: 10.1118/1.2953567. Med Phys. 2008. PMID: 18777924 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources