Measurements of membrane potentials in plant mitochondria with the safranine method - PubMed (original) (raw)
Measurements of membrane potentials in plant mitochondria with the safranine method
A L Moore et al. Plant Physiol. 1982 Nov.
Abstract
The positively charged dye, safranine, has been used as an indicator of membrane potentials in mung bean (Phaseolus aureus) and Voodoo lily (Sauromatum guttatum) mitochondria under a variety of metabolic conditions. The spectral response of safranine has been calibrated with respect to a K(+) diffusion potential and was found to be linearly related to the developed potential within the range of 50 to 160 millivolts. Both respiration and ATP hydrolysis gave rise to a membrane potential of approximately 135 millivolts. Respiratory inhibitors such as cyanide and antimycin depolarized the potential, whereas rotenone has little effect. No potentials were developed during NADH supported cyanide insensitive respiration. It is concluded that safranine may be a useful spectrophotometric probe of the mitochondrial membrane potential.
Similar articles
- The Respiratory Chain of Plant Mitochondria: IX. Oxidation-Reduction Potentials of the Cytochromes of Mung Bean Mitochondria.
Dutton PL, Storey BT. Dutton PL, et al. Plant Physiol. 1971 Feb;47(2):282-8. doi: 10.1104/pp.47.2.282. Plant Physiol. 1971. PMID: 16657609 Free PMC article. - Trifluoperazine inhibition of electron transport and adenosine triphosphatase in plant mitochondria.
Dunn PP, Slabas AR, Cottingham IR, Moore AL. Dunn PP, et al. Arch Biochem Biophys. 1984 Feb 15;229(1):287-94. doi: 10.1016/0003-9861(84)90154-1. Arch Biochem Biophys. 1984. PMID: 6322689 - Effects of ionophores and metabolic inhibitors on the mitochondrial membrane potential within isolated hepatocytes as measured with the safranine method.
Akerman KE, Järvisalo JO. Akerman KE, et al. Biochem J. 1980 Oct 15;192(1):183-90. doi: 10.1042/bj1920183. Biochem J. 1980. PMID: 7305896 Free PMC article. - Undesirable feature of safranine as a probe for mitochondrial membrane potential.
Valle VG, Pereira-da-Silva L, Vercesi AE. Valle VG, et al. Biochem Biophys Res Commun. 1986 Feb 26;135(1):189-95. doi: 10.1016/0006-291x(86)90961-7. Biochem Biophys Res Commun. 1986. PMID: 3954769 - Functional molecular aspects of the NADH dehydrogenases of plant mitochondria.
Soole KL, Menz RI. Soole KL, et al. J Bioenerg Biomembr. 1995 Aug;27(4):397-406. doi: 10.1007/BF02110002. J Bioenerg Biomembr. 1995. PMID: 8595975 Review.
Cited by
- Chlortetracycline and the transmembrane potential of the inner membrane of plant mitochondria.
Møller IM, Kay CJ, Palmer JM. Møller IM, et al. Biochem J. 1986 Aug 1;237(3):765-71. doi: 10.1042/bj2370765. Biochem J. 1986. PMID: 3800917 Free PMC article. - Studies of the Formation and Stability of Ezetimibe-Cyclodextrin Inclusion Complexes.
Biernacka M, Ilyich T, Zavodnik I, Pałecz B, Stepniak A. Biernacka M, et al. Int J Mol Sci. 2021 Dec 31;23(1):455. doi: 10.3390/ijms23010455. Int J Mol Sci. 2021. PMID: 35008881 Free PMC article. - Salicylic Acid Regulation of Respiration in Higher Plants: Alternative Oxidase Expression.
Rhoads DM, McIntosh L. Rhoads DM, et al. Plant Cell. 1992 Sep;4(9):1131-1139. doi: 10.1105/tpc.4.9.1131. Plant Cell. 1992. PMID: 12297672 Free PMC article. - Cytochrome and Alternative Pathway Respiration in Tobacco (Effects of Salicylic Acid).
Rhoads DM, McIntosh L. Rhoads DM, et al. Plant Physiol. 1993 Nov;103(3):877-883. doi: 10.1104/pp.103.3.877. Plant Physiol. 1993. PMID: 12231986 Free PMC article.
References
- Biochim Biophys Acta. 1979 May 9;546(2):341-7 - PubMed
- Methods Enzymol. 1979;55:569-86 - PubMed
- J Bioenerg. 1973;4(4):397-408 - PubMed
- Biochemistry. 1973 Aug 14;12(17):3350-5 - PubMed
- Plant Physiol. 1980 Sep;66(3):457-62 - PubMed
LinkOut - more resources
Full Text Sources