Expression of Human Carbonic Anhydrase in the Cyanobacterium Synechococcus PCC7942 Creates a High CO(2)-Requiring Phenotype : Evidence for a Central Role for Carboxysomes in the CO(2) Concentrating Mechanism - PubMed (original) (raw)

Expression of Human Carbonic Anhydrase in the Cyanobacterium Synechococcus PCC7942 Creates a High CO(2)-Requiring Phenotype : Evidence for a Central Role for Carboxysomes in the CO(2) Concentrating Mechanism

G D Price et al. Plant Physiol. 1989 Oct.

Abstract

Active human carbonic anhydrase II (HCAII) protein was expressed in the cyanobacterium Synechococcus PCC7942 by means of transformation with the bidirectional expression vector, pCA. This expression was driven by the bacterial Tac promoter and was regulated by the IacIQ repressor protein, which was expressed from the same plasmid. Expression levels reached values of around 0.3% of total cell protein and this protein appeared to be entirely soluble in nature and located within the cytosol of the cell. The expression of this protein has dramatic effects on the photosynthetic physiology of the cell. Induction of expression of carbonic anhydrase (CA) activity in both high dissolved inorganic carbon (C(i)) and low C(i) grown cells leads the creation of a high C(i) requiring phenotype causing: (a) a dramatic increase in the K(0.5) (C(i)) for photosynthesis, (b) a loss of the ability to accumulate internal C(i), and (c) a decrease in the lag between the initial C(i) accumulation following illumination and the efflux of CO(2) from the cells. In addition, the effects of the expressed CA can largely be reversed by the carbonic anhydrase inhibitor ethoxyzolamide. As a result of the above findings, it is concluded that the CO(2) concentrating mechanism in Synechococcus PCC7942 is largely dependent on (a) the absence of CA activity from the cytosol, and (b) the specific localization of CA activity in the carboxysome. A theoretical model of photosynthesis and C(i) accumulation is developed in which the carboxysome plays a central role as both the site of CO(2) generation from HCO(3(-) ) and a resistance barrier to CO(2) efflux from the cell. There is good qualitative agreement between this model and the measured physiological effects of expressed cytosolic CA in Synechococcus cells.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Biochim Biophys Acta. 1965 Nov 29;109(2):448-53 - PubMed
    1. Gene. 1985;33(1):103-19 - PubMed
    1. Plant Physiol. 1989 Jan;89(1):37-43 - PubMed
    1. Plant Physiol. 1989 Jan;89(1):51-60 - PubMed
    1. Plant Physiol. 1989 Oct;91(2):514-25 - PubMed

LinkOut - more resources