Purification and characterization of dihydrodipicolinate synthase from pea - PubMed (original) (raw)
Purification and characterization of dihydrodipicolinate synthase from pea
C Dereppe et al. Plant Physiol. 1992 Mar.
Abstract
Dihydrodipicolinate synthase (EC 4.2.1.52), the first enzyme unique to lysine biosynthesis in bacteria and higher plants, has been purified to homogeneity from etiolated pea (Pisum sativum) seedlings using a combination of conventional and affinity chromatographic steps. This is the first report on a homogeneous preparation of native dihydrodipicolinate synthase from a plant source. The pea dihydrodipicolinate synthase has an apparent molecular weight of 127,000 and is composed of three identical subunits of 43,000 as determined by gel filtration and cross-linking experiments. The trimeric quaternary structure resembles the trimeric structure of other aldolases, such as 2-keto-3-deoxy-6-phosphogluconic acid aldolase, which catalyze similar aldol condensations. The amino acid compositions of dihydrodipicolinate synthase from pea and Escherichia coli are similar, the most significant difference concerns the methionine content: dihydrodipicolinate synthase from pea contains 22 moles of methionine residue per mole of native protein, contrary to the E. coli enzyme, which does not contain this amino acid at all. Dihydrodipicolinate synthase from pea is highly specific for the substrates pyruvate and l-aspartate-beta-semialdehyde; it follows Michaelis-Menten kinetics for both substrates. The pyruvate and l-aspartate-beta-semialdehyde have Michaelis constant values of 1.70 and 0.40 millimolar, respectively. l-Lysine, S-(2-aminoethyl)-l-cysteine, and l-alpha-(2-aminoethoxyvinyl)glycine are strong allosteric inhibitors of the enzyme with 50% inhibitory values of 20, 160, and 155 millimolar, respectively. The inhibition by l-lysine and l-alpha-(2-aminoethoxyvinyl)glycine is noncompetitive towards l-aspartate-beta-semialdehyde, whereas S-(2-aminoethyl)-l-cysteine inhibits dihydrodipicolinate synthase competitively with respect to l-aspartate-beta-semialdehyde. Furthermore, the addition of (2R,3S,6S)-2,6-diamino-3-hydroxy-heptandioic acid (1.2 millimolar) and (2S,6R/S)-2,6-diamino-6-phosphono-hexanic acid (1.2 millimolar) activates dihydrodipicolinate synthase from pea by a factor of 1.4 and 1.2, respectively. This is the first reported activation process found for dihydrodipicolinate synthase.
Similar articles
- Isolation and characterization of dihydrodipicolinate synthase from maize.
Frisch DA, Gengenbach BG, Tommey AM, Sellner JM, Somers DA, Myers DE. Frisch DA, et al. Plant Physiol. 1991 Jun;96(2):444-52. doi: 10.1104/pp.96.2.444. Plant Physiol. 1991. PMID: 16668206 Free PMC article. - Purification and characterization of dihydrodipicolinate synthase from wheat suspension cultures.
Kumpaisal R, Hashimoto T, Yamada Y. Kumpaisal R, et al. Plant Physiol. 1987 Sep;85(1):145-51. doi: 10.1104/pp.85.1.145. Plant Physiol. 1987. PMID: 16665646 Free PMC article. - Dihydrodipicolinic acid synthase of Bacillus licheniformis. Quaternary structure, kinetics, and stability in the presence of sodium chloride and substrates.
Halling SM, Stahly DP. Halling SM, et al. Biochim Biophys Acta. 1976 Dec 8;452(2):580-96. doi: 10.1016/0005-2744(76)90209-6. Biochim Biophys Acta. 1976. PMID: 1009127 - Dihydrodipicolinate Synthase: Structure, Dynamics, Function, and Evolution.
Grant Pearce F, Hudson AO, Loomes K, Dobson RCJ. Grant Pearce F, et al. Subcell Biochem. 2017;83:271-289. doi: 10.1007/978-3-319-46503-6_10. Subcell Biochem. 2017. PMID: 28271480 Review. - Molecular evolution of an oligomeric biocatalyst functioning in lysine biosynthesis.
Soares da Costa TP, Abbott BM, Gendall AR, Panjikar S, Perugini MA. Soares da Costa TP, et al. Biophys Rev. 2018 Apr;10(2):153-162. doi: 10.1007/s12551-017-0350-y. Epub 2017 Dec 5. Biophys Rev. 2018. PMID: 29204887 Free PMC article. Review.
Cited by
- Expression, purification, crystallization and preliminary X-ray diffraction analysis of dihydrodipicolinate synthase from Bacillus anthracis in the presence of pyruvate.
Voss JE, Scally SW, Taylor NL, Dogovski C, Alderton MR, Hutton CA, Gerrard JA, Parker MW, Dobson RC, Perugini MA. Voss JE, et al. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009 Feb 1;65(Pt 2):188-91. doi: 10.1107/S1744309109000670. Epub 2009 Jan 31. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009. PMID: 19194017 Free PMC article. - Regulation of Lysine and Threonine Synthesis.
Galili G. Galili G. Plant Cell. 1995 Jul;7(7):899-906. doi: 10.1105/tpc.7.7.899. Plant Cell. 1995. PMID: 12242392 Free PMC article. No abstract available. - Medicago truncatula dihydrodipicolinate synthase (DHDPS) enzymes display novel regulatory properties.
Erzeel E, Van Bochaute P, Thu TT, Angenon G. Erzeel E, et al. Plant Mol Biol. 2013 Mar;81(4-5):401-15. doi: 10.1007/s11103-013-0008-5. Epub 2013 Jan 18. Plant Mol Biol. 2013. PMID: 23329373 - Crystallization and preliminary X-ray analysis of dihydrodipicolinate synthase from Clostridium botulinum in the presence of its substrate pyruvate.
Atkinson SC, Dobson RC, Newman JM, Gorman MA, Dogovski C, Parker MW, Perugini MA. Atkinson SC, et al. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009 Mar 1;65(Pt 3):253-5. doi: 10.1107/S1744309108039018. Epub 2009 Feb 14. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009. PMID: 19255476 Free PMC article.
References
- J Biol Chem. 1970 Mar 25;245(6):1362-73 - PubMed
- J Bacteriol. 1971 Mar;105(3):844-54 - PubMed
- FEBS Lett. 1980 Jul 28;116(2):189-92 - PubMed
- J Bacteriol. 1975 Mar;121(3):970-4 - PubMed
- Methods Enzymol. 1974;34:30-58 - PubMed
LinkOut - more resources
Full Text Sources
Molecular Biology Databases