A multiplicity of potential carbon catabolite repression mechanisms in prokaryotic and eukaryotic microorganisms - PubMed (original) (raw)
Review
. 1991 Dec;3(12):1137-47.
Affiliations
- PMID: 1667478
Review
A multiplicity of potential carbon catabolite repression mechanisms in prokaryotic and eukaryotic microorganisms
M H Saier Jr. New Biol. 1991 Dec.
Abstract
The discovery of cyclic AMP (cAMP) and its receptor protein in Escherichia coli and the convincing demonstration that these molecules mediate catabolite repression of the synthesis of carbohydrate catabolic enzymes led to the widespread belief that the phenomenon of catabolite repression in bacteria was understood. It is now recognized that cAMP-independent catabolite repression mechanisms are operative in both prokaryotic and eukaryotic microorganisms. New evidence has led to the identification of a diversity of cAMP-independent regulatory mechanisms that may mediate catabolite repression in bacteria. These mechanisms utilize (i) novel transcription factors, (ii) starvation-induced RNA polymerase sigma factors, and (iii) three evolutionarily distinct protein phosphorylating enzyme systems. Although these mechanisms are not fully understood, it is suggested that they exert their effects at the transcriptional level and that phosphorylation and allosteric control by regulatory proteins are involved in these processes.
Similar articles
- The mechanisms of carbon catabolite repression in bacteria.
Deutscher J. Deutscher J. Curr Opin Microbiol. 2008 Apr;11(2):87-93. doi: 10.1016/j.mib.2008.02.007. Epub 2008 Mar 21. Curr Opin Microbiol. 2008. PMID: 18359269 Review. - Negative control of rpoS expression by phosphoenolpyruvate: carbohydrate phosphotransferase system in Escherichia coli.
Ueguchi C, Misonou N, Mizuno T. Ueguchi C, et al. J Bacteriol. 2001 Jan;183(2):520-7. doi: 10.1128/JB.183.2.520-527.2001. J Bacteriol. 2001. PMID: 11133945 Free PMC article. - Carbon catabolite repression in bacteria.
Stülke J, Hillen W. Stülke J, et al. Curr Opin Microbiol. 1999 Apr;2(2):195-201. doi: 10.1016/S1369-5274(99)80034-4. Curr Opin Microbiol. 1999. PMID: 10322165 - Interplay between CRP-cAMP and PII-Ntr systems forms novel regulatory network between carbon metabolism and nitrogen assimilation in Escherichia coli.
Mao XJ, Huo YX, Buck M, Kolb A, Wang YP. Mao XJ, et al. Nucleic Acids Res. 2007;35(5):1432-40. doi: 10.1093/nar/gkl1142. Epub 2007 Feb 6. Nucleic Acids Res. 2007. PMID: 17284458 Free PMC article. - Cyclic AMP-independent catabolite repression in bacteria.
Saier MH Jr. Saier MH Jr. FEMS Microbiol Lett. 1996 May 1;138(2-3):97-103. doi: 10.1111/j.1574-6968.1996.tb08141.x. FEMS Microbiol Lett. 1996. PMID: 9026456 Review.
Cited by
- Acclimation of photosynthesis to elevated CO2 through feedback regulation of gene expression: Climate of opinion.
Van Oosten JJ, Besford RT. Van Oosten JJ, et al. Photosynth Res. 1996 Jun;48(3):353-65. doi: 10.1007/BF00029468. Photosynth Res. 1996. PMID: 24271476 - The catabolite repressor/activator (Cra) protein of enteric bacteria.
Saier MH Jr, Ramseier TM. Saier MH Jr, et al. J Bacteriol. 1996 Jun;178(12):3411-7. doi: 10.1128/jb.178.12.3411-3417.1996. J Bacteriol. 1996. PMID: 8655535 Free PMC article. Review. No abstract available. - A Drosophila gene promoter is subject to glucose repression in yeast cells.
Hickey DA, Benkel KI, Fong Y, Benkel BF. Hickey DA, et al. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11109-12. doi: 10.1073/pnas.91.23.11109. Proc Natl Acad Sci U S A. 1994. PMID: 7526389 Free PMC article.