Genomics and the irreducible nature of eukaryote cells - PubMed (original) (raw)
. 2006 May 19;312(5776):1011-4.
doi: 10.1126/science.1121674.
Affiliations
- PMID: 16709776
- DOI: 10.1126/science.1121674
Genomics and the irreducible nature of eukaryote cells
C G Kurland et al. Science. 2006.
Abstract
Large-scale comparative genomics in harness with proteomics has substantiated fundamental features of eukaryote cellular evolution. The evolutionary trajectory of modern eukaryotes is distinct from that of prokaryotes. Data from many sources give no direct evidence that eukaryotes evolved by genome fusion between archaea and bacteria. Comparative genomics shows that, under certain ecological settings, sequence loss and cellular simplification are common modes of evolution. Subcellular architecture of eukaryote cells is in part a physical-chemical consequence of molecular crowding; subcellular compartmentation with specialized proteomes is required for the efficient functioning of proteins.
Comment in
- The evolution of eukaryotes.
Martin W, Dagan T, Koonin EV, Dipippo JL, Gogarten JP, Lake JA. Martin W, et al. Science. 2007 Apr 27;316(5824):542-3; author reply 542-3. doi: 10.1126/science.316.5824.542c. Science. 2007. PMID: 17463271 No abstract available.
Similar articles
- The origins of modern proteomes.
Kurland CG, Canbäck B, Berg OG. Kurland CG, et al. Biochimie. 2007 Dec;89(12):1454-63. doi: 10.1016/j.biochi.2007.09.004. Epub 2007 Sep 15. Biochimie. 2007. PMID: 17949885 - Where is the root of the universal tree of life?
Forterre P, Philippe H. Forterre P, et al. Bioessays. 1999 Oct;21(10):871-9. doi: 10.1002/(SICI)1521-1878(199910)21:10<871::AID-BIES10>3.0.CO;2-Q. Bioessays. 1999. PMID: 10497338 Review. - Average gene length is highly conserved in prokaryotes and eukaryotes and diverges only between the two kingdoms.
Xu L, Chen H, Hu X, Zhang R, Zhang Z, Luo ZW. Xu L, et al. Mol Biol Evol. 2006 Jun;23(6):1107-8. doi: 10.1093/molbev/msk019. Epub 2006 Apr 12. Mol Biol Evol. 2006. PMID: 16611645 - The evolution of eukaryotes.
Martin W, Dagan T, Koonin EV, Dipippo JL, Gogarten JP, Lake JA. Martin W, et al. Science. 2007 Apr 27;316(5824):542-3; author reply 542-3. doi: 10.1126/science.316.5824.542c. Science. 2007. PMID: 17463271 No abstract available. - Evolution of the eukaryotic membrane-trafficking system: origin, tempo and mode.
Dacks JB, Field MC. Dacks JB, et al. J Cell Sci. 2007 Sep 1;120(Pt 17):2977-85. doi: 10.1242/jcs.013250. J Cell Sci. 2007. PMID: 17715154 Review.
Cited by
- Gene similarity networks provide tools for understanding eukaryote origins and evolution.
Alvarez-Ponce D, Lopez P, Bapteste E, McInerney JO. Alvarez-Ponce D, et al. Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):E1594-603. doi: 10.1073/pnas.1211371110. Epub 2013 Apr 1. Proc Natl Acad Sci U S A. 2013. PMID: 23576716 Free PMC article. - The universal tree of life: an update.
Forterre P. Forterre P. Front Microbiol. 2015 Jul 21;6:717. doi: 10.3389/fmicb.2015.00717. eCollection 2015. Front Microbiol. 2015. PMID: 26257711 Free PMC article. Review. - Combined experimental and computational approach to identify non-protein-coding RNAs in the deep-branching eukaryote Giardia intestinalis.
Chen XS, Rozhdestvensky TS, Collins LJ, Schmitz J, Penny D. Chen XS, et al. Nucleic Acids Res. 2007;35(14):4619-28. doi: 10.1093/nar/gkm474. Epub 2007 Jun 22. Nucleic Acids Res. 2007. PMID: 17586815 Free PMC article. - Evolution of vacuolar proton pyrophosphatase domains and volutin granules: clues into the early evolutionary origin of the acidocalcisome.
Seufferheld MJ, Kim KM, Whitfield J, Valerio A, Caetano-Anollés G. Seufferheld MJ, et al. Biol Direct. 2011 Oct 5;6:50. doi: 10.1186/1745-6150-6-50. Biol Direct. 2011. PMID: 21974828 Free PMC article. - The relative ages of eukaryotes and akaryotes.
Penny D, Collins LJ, Daly TK, Cox SJ. Penny D, et al. J Mol Evol. 2014 Dec;79(5-6):228-39. doi: 10.1007/s00239-014-9643-y. Epub 2014 Sep 2. J Mol Evol. 2014. PMID: 25179144
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources