Horizontal endosymbiont transmission in hydrothermal vent tubeworms - PubMed (original) (raw)
. 2006 May 18;441(7091):345-8.
doi: 10.1038/nature04793.
Affiliations
- PMID: 16710420
- DOI: 10.1038/nature04793
Horizontal endosymbiont transmission in hydrothermal vent tubeworms
Andrea D Nussbaumer et al. Nature. 2006.
Abstract
Transmission of obligate bacterial symbionts between generations is vital for the survival of the host. Although the larvae of certain hydrothermal vent tubeworms (Vestimentifera, Siboglinidae) are symbiont-free and possess a transient digestive system, these structures are lost during development, resulting in adult animals that are nutritionally dependent on their bacterial symbionts. Thus, each generation of tubeworms must be newly colonized with its specific symbiont. Here we present a model for tubeworm symbiont acquisition and the development of the symbiont-housing organ, the trophosome. Our data indicate that the bacterial symbionts colonize the developing tube of the settled larvae and enter the host through the skin, a process that continues through the early juvenile stages during which the trophosome is established from mesodermal tissue. In later juvenile stages we observed massive apoptosis of host epidermis, muscles and undifferentiated mesodermal tissue, which was coincident with the cessation of the colonization process. Characterizing the symbiont transmission process in this finely tuned mutualistic symbiosis provides another model of symbiont acquisition and additional insights into underlying mechanisms common to both pathogenic infections and beneficial host-symbiont interactions.
Similar articles
- Endosymbionts escape dead hydrothermal vent tubeworms to enrich the free-living population.
Klose J, Polz MF, Wagner M, Schimak MP, Gollner S, Bright M. Klose J, et al. Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):11300-5. doi: 10.1073/pnas.1501160112. Epub 2015 Aug 17. Proc Natl Acad Sci U S A. 2015. PMID: 26283348 Free PMC article. - Molecular characterization of bacteria associated with the trophosome and the tube of Lamellibrachia sp., a siboglinid annelid from cold seeps in the eastern Mediterranean.
Duperron S, de Beer D, Zbinden M, Boetius A, Schipani V, Kahil N, Gaill F. Duperron S, et al. FEMS Microbiol Ecol. 2009 Sep;69(3):395-409. doi: 10.1111/j.1574-6941.2009.00724.x. Epub 2009 Jun 10. FEMS Microbiol Ecol. 2009. PMID: 19583785 - Dacus oleae microbial symbionts.
Manousis T, Ellar DJ. Manousis T, et al. Microbiol Sci. 1988 May;5(5):149-52. Microbiol Sci. 1988. PMID: 3079231 Review. - Chemosynthetic endosymbioses: adaptations to oxic-anoxic interfaces.
Stewart FJ, Newton IL, Cavanaugh CM. Stewart FJ, et al. Trends Microbiol. 2005 Sep;13(9):439-48. doi: 10.1016/j.tim.2005.07.007. Trends Microbiol. 2005. PMID: 16054816 Review.
Cited by
- A regulatory hydrogenase gene cluster observed in the thioautotrophic symbiont of Bathymodiolus mussel in the East Pacific Rise.
Patra AK, Perez M, Jang SJ, Won YJ. Patra AK, et al. Sci Rep. 2022 Dec 23;12(1):22232. doi: 10.1038/s41598-022-26669-y. Sci Rep. 2022. PMID: 36564432 Free PMC article. - The role of microbial motility and chemotaxis in symbiosis.
Raina JB, Fernandez V, Lambert B, Stocker R, Seymour JR. Raina JB, et al. Nat Rev Microbiol. 2019 May;17(5):284-294. doi: 10.1038/s41579-019-0182-9. Nat Rev Microbiol. 2019. PMID: 30923350 Review. - Endosymbionts escape dead hydrothermal vent tubeworms to enrich the free-living population.
Klose J, Polz MF, Wagner M, Schimak MP, Gollner S, Bright M. Klose J, et al. Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):11300-5. doi: 10.1073/pnas.1501160112. Epub 2015 Aug 17. Proc Natl Acad Sci U S A. 2015. PMID: 26283348 Free PMC article. - Holes in the Hologenome: Why Host-Microbe Symbioses Are Not Holobionts.
Douglas AE, Werren JH. Douglas AE, et al. mBio. 2016 Mar 31;7(2):e02099. doi: 10.1128/mBio.02099-15. mBio. 2016. PMID: 27034285 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources