Predictive base substitution rules that determine the binding and transcriptional specificity of Maf recognition elements - PubMed (original) (raw)
Predictive base substitution rules that determine the binding and transcriptional specificity of Maf recognition elements
Tae Yamamoto et al. Genes Cells. 2006 Jun.
Free article
Abstract
Small Maf transcription factors possess a basic region-leucine zipper motif through which they form homodimers or heterodimers with CNC and Bach proteins. Different combinations of small Maf and CNC/Bach protein dimers bind to cis-acting DNA elements, collectively referred to as Maf-recognition elements (MAREs), to either activate or repress transcription. As MAREs defined by function are often divergent from the consensus sequence, we speculated that sequence variations in the MAREs form the basis for selective Maf:Maf or Maf:CNC dimer binding. To test this hypothesis, we analyzed the binding of Maf-containing dimers to variant sequences of the MARE using bacterially expressed MafG and Nrf2 proteins and a surface plasmon resonance-microarray imaging technique. We found that base substitutions in the MAREs actually determined their binding preference for different dimers. In fact, we were able to categorize MAREs into five groups: MafG homodimer-orientd MAREs (Groups I and II), ambivalent MAREs (Group III), MafG:Nrf2 heterodimer-orientd MAREs (Group IV), and silent MAREs (Group V). This study thus manifests that a clear set of rules pertaining to the cis-acting element determine whether a given MARE preferentially associates with MafG homodimer or with MafG:Nrf2 heterodimer.
Similar articles
- Human small Maf proteins form heterodimers with CNC family transcription factors and recognize the NF-E2 motif.
Toki T, Itoh J, Kitazawa J, Arai K, Hatakeyama K, Akasaka J, Igarashi K, Nomura N, Yokoyama M, Yamamoto M, Ito E. Toki T, et al. Oncogene. 1997 Apr 24;14(16):1901-10. doi: 10.1038/sj.onc.1201024. Oncogene. 1997. PMID: 9150357 - Molecular basis distinguishing the DNA binding profile of Nrf2-Maf heterodimer from that of Maf homodimer.
Kimura M, Yamamoto T, Zhang J, Itoh K, Kyo M, Kamiya T, Aburatani H, Katsuoka F, Kurokawa H, Tanaka T, Motohashi H, Yamamoto M. Kimura M, et al. J Biol Chem. 2007 Nov 16;282(46):33681-33690. doi: 10.1074/jbc.M706863200. Epub 2007 Sep 17. J Biol Chem. 2007. PMID: 17875642 - Unique cistrome defined as CsMBE is strictly required for Nrf2-sMaf heterodimer function in cytoprotection.
Otsuki A, Suzuki M, Katsuoka F, Tsuchida K, Suda H, Morita M, Shimizu R, Yamamoto M. Otsuki A, et al. Free Radic Biol Med. 2016 Feb;91:45-57. doi: 10.1016/j.freeradbiomed.2015.12.005. Epub 2015 Dec 8. Free Radic Biol Med. 2016. PMID: 26677805 - Small Maf proteins in mammalian gene control: mere dimerization partners or dynamic transcriptional regulators?
Blank V. Blank V. J Mol Biol. 2008 Feb 29;376(4):913-25. doi: 10.1016/j.jmb.2007.11.074. Epub 2007 Dec 4. J Mol Biol. 2008. PMID: 18201722 Review. - Small Maf proteins (MafF, MafG, MafK): History, structure and function.
Katsuoka F, Yamamoto M. Katsuoka F, et al. Gene. 2016 Jul 25;586(2):197-205. doi: 10.1016/j.gene.2016.03.058. Epub 2016 Apr 5. Gene. 2016. PMID: 27058431 Free PMC article. Review.
Cited by
- NRF2, cancer and calorie restriction.
Martín-Montalvo A, Villalba JM, Navas P, de Cabo R. Martín-Montalvo A, et al. Oncogene. 2011 Feb 3;30(5):505-20. doi: 10.1038/onc.2010.492. Epub 2010 Nov 8. Oncogene. 2011. PMID: 21057541 Free PMC article. Review. - The Effects of Sequence Variation on Genome-wide NRF2 Binding--New Target Genes and Regulatory SNPs.
Kuosmanen SM, Viitala S, Laitinen T, Peräkylä M, Pölönen P, Kansanen E, Leinonen H, Raju S, Wienecke-Baldacchino A, Närvänen A, Poso A, Heinäniemi M, Heikkinen S, Levonen AL. Kuosmanen SM, et al. Nucleic Acids Res. 2016 Feb 29;44(4):1760-75. doi: 10.1093/nar/gkw052. Epub 2016 Jan 29. Nucleic Acids Res. 2016. PMID: 26826707 Free PMC article. - Structural basis of alternative DNA recognition by Maf transcription factors.
Kurokawa H, Motohashi H, Sueno S, Kimura M, Takagawa H, Kanno Y, Yamamoto M, Tanaka T. Kurokawa H, et al. Mol Cell Biol. 2009 Dec;29(23):6232-44. doi: 10.1128/MCB.00708-09. Epub 2009 Sep 21. Mol Cell Biol. 2009. PMID: 19797082 Free PMC article. - HTLV-1 basic leucine zipper factor protects cells from oxidative stress by upregulating expression of Heme Oxygenase I.
Rushing AW, Rushing B, Hoang K, Sanders SV, Péloponèse JM Jr, Polakowski N, Lemasson I. Rushing AW, et al. PLoS Pathog. 2019 Jun 28;15(6):e1007922. doi: 10.1371/journal.ppat.1007922. eCollection 2019 Jun. PLoS Pathog. 2019. PMID: 31251786 Free PMC article. - Redox control of microglial function: molecular mechanisms and functional significance.
Rojo AI, McBean G, Cindric M, Egea J, López MG, Rada P, Zarkovic N, Cuadrado A. Rojo AI, et al. Antioxid Redox Signal. 2014 Oct 20;21(12):1766-801. doi: 10.1089/ars.2013.5745. Epub 2014 May 5. Antioxid Redox Signal. 2014. PMID: 24597893 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous