Yeasts illustrate the molecular mechanisms of eukaryotic genome evolution - PubMed (original) (raw)
Review
Yeasts illustrate the molecular mechanisms of eukaryotic genome evolution
Bernard Dujon. Trends Genet. 2006 Jul.
Abstract
Hemiascomycetous yeasts have the greatest number of sequenced species for a single phylum, and are at the forefront of evolutionary genomics of eukaryotes. Yeast genomes show the dynamic interplay between the formation and loss of genes and help to characterize the mechanisms involved and their functional and evolutionary consequences. These mechanisms have equivalents in the genomes of multicellular organisms. Yeast genomes show extensive loss of introns and a reduced role of transposable elements, and so probably have a more limited potential to form novel genes and functions than multicellular organisms, possibly explaining their conserved biological and morphological properties despite their considerable evolutionary range.
Similar articles
- Yeast genome sequencing: the power of comparative genomics.
Piskur J, Langkjaer RB. Piskur J, et al. Mol Microbiol. 2004 Jul;53(2):381-9. doi: 10.1111/j.1365-2958.2004.04182.x. Mol Microbiol. 2004. PMID: 15228521 Review. - Hemiascomycetous yeasts at the forefront of comparative genomics.
Dujon B. Dujon B. Curr Opin Genet Dev. 2005 Dec;15(6):614-20. doi: 10.1016/j.gde.2005.09.005. Epub 2005 Sep 26. Curr Opin Genet Dev. 2005. PMID: 16188435 Review. - Evolutionary genomics: seeing double.
Goffeau A. Goffeau A. Nature. 2004 Jul 1;430(6995):25-6. doi: 10.1038/430025a. Nature. 2004. PMID: 15229585 No abstract available. - Molecular evolution of minisatellites in hemiascomycetous yeasts.
Richard GF, Dujon B. Richard GF, et al. Mol Biol Evol. 2006 Jan;23(1):189-202. doi: 10.1093/molbev/msj022. Epub 2005 Sep 21. Mol Biol Evol. 2006. PMID: 16177231 - Transposable elements in yeasts.
Bleykasten-Grosshans C, Neuvéglise C. Bleykasten-Grosshans C, et al. C R Biol. 2011 Aug-Sep;334(8-9):679-86. doi: 10.1016/j.crvi.2011.05.017. Epub 2011 Jul 5. C R Biol. 2011. PMID: 21819950 Review.
Cited by
- Post-zygotic sterility and cytonuclear compatibility limits in S. cerevisiae xenomitochondrial cybrids.
Špírek M, Poláková S, Jatzová K, Sulo P. Špírek M, et al. Front Genet. 2015 Jan 12;5:454. doi: 10.3389/fgene.2014.00454. eCollection 2014. Front Genet. 2015. PMID: 25628643 Free PMC article. - Genome-wide analysis of intraspecific transposon diversity in yeast.
Bleykasten-Grosshans C, Friedrich A, Schacherer J. Bleykasten-Grosshans C, et al. BMC Genomics. 2013 Jun 14;14:399. doi: 10.1186/1471-2164-14-399. BMC Genomics. 2013. PMID: 23768249 Free PMC article. - Evolutionary analysis of heterochromatin protein compatibility by interspecies complementation in Saccharomyces.
Zill OA, Scannell DR, Kuei J, Sadhu M, Rine J. Zill OA, et al. Genetics. 2012 Nov;192(3):1001-14. doi: 10.1534/genetics.112.141549. Epub 2012 Aug 24. Genetics. 2012. PMID: 22923378 Free PMC article. - Expression variability of co-regulated genes differentiates Saccharomyces cerevisiae strains.
Carreto L, Eiriz MF, Domingues I, Schuller D, Moura GR, Santos MA. Carreto L, et al. BMC Genomics. 2011 Apr 20;12:201. doi: 10.1186/1471-2164-12-201. BMC Genomics. 2011. PMID: 21507216 Free PMC article. - Evolutionary Dynamics of Regulatory Changes Underlying Gene Expression Divergence among Saccharomyces Species.
Metzger BPH, Wittkopp PJ, Coolon JD. Metzger BPH, et al. Genome Biol Evol. 2017 Apr 1;9(4):843-854. doi: 10.1093/gbe/evx035. Genome Biol Evol. 2017. PMID: 28338820 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases