MAPK-activated protein kinase 2 deficiency in microglia inhibits pro-inflammatory mediator release and resultant neurotoxicity. Relevance to neuroinflammation in a transgenic mouse model of Alzheimer disease - PubMed (original) (raw)

. 2006 Aug 18;281(33):23658-67.

doi: 10.1074/jbc.M513646200. Epub 2006 Jun 14.

Affiliations

Free article

MAPK-activated protein kinase 2 deficiency in microglia inhibits pro-inflammatory mediator release and resultant neurotoxicity. Relevance to neuroinflammation in a transgenic mouse model of Alzheimer disease

Ainsley A Culbert et al. J Biol Chem. 2006.

Free article

Abstract

MAPK-activated protein kinase 2 (MAPKAP K2 or MK2) is one of several kinases directly regulated by p38 MAPK. A role for p38 MAPK in the pathology of Alzheimer disease (AD) has previously been suggested. Here, we provide evidence to suggest that MK2 also plays a role in neuroinflammatory and neurodegenerative pathology of relevance to AD. MK2 activation and expression were increased in lipopolysaccharide (LPS) + interferon gamma-stimulated microglial cells, implicating a role for MK2 in eliciting a pro-inflammatory response. Microglia cultured ex vivo from MK2-deficient (MK2-/-) mice demonstrated significant inhibition in release of tumor necrosis factor alpha, KC (mouse chemokine with highest sequence identity to human GROs and interleukin-8), and macrophage inflammatory protein 1alpha on stimulation with LPS + interferon gamma or amyloid-beta peptide (1-42) compared with MK2+/+ wild-type microglia. Consistent with an inhibition in pro-inflammatory mediator release, cortical neurons co-cultured with LPS + interferon gamma-stimulated or amyloid-beta peptide (1-42)-stimulated MK2-/- microglia were protected from microglial-mediated neuronal cell toxicity. In a transgenic mouse model of AD in which amyloid precursor protein and presenilin-1 harboring familial AD mutations are overexpressed in specific regions of the brain, elevated activation and expression of MK2 correlated with beta-amyloid deposition, microglial activation, and up-regulation of tumor necrosis factor alpha, macrophage inflammatory protein 1alpha, and KC gene expression in the same brain regions. Our data propose a role for MK2 in AD brain pathology, for which neuroinflammation involving cytokines and chemokines and overt neuronal loss have been documented.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources