The Southern Ocean biogeochemical divide - PubMed (original) (raw)
. 2006 Jun 22;441(7096):964-7.
doi: 10.1038/nature04883.
Affiliations
- PMID: 16791191
- DOI: 10.1038/nature04883
The Southern Ocean biogeochemical divide
I Marinov et al. Nature. 2006.
Abstract
Modelling studies have demonstrated that the nutrient and carbon cycles in the Southern Ocean play a central role in setting the air-sea balance of CO(2) and global biological production. Box model studies first pointed out that an increase in nutrient utilization in the high latitudes results in a strong decrease in the atmospheric carbon dioxide partial pressure (pCO2). This early research led to two important ideas: high latitude regions are more important in determining atmospheric pCO2 than low latitudes, despite their much smaller area, and nutrient utilization and atmospheric pCO2 are tightly linked. Subsequent general circulation model simulations show that the Southern Ocean is the most important high latitude region in controlling pre-industrial atmospheric CO(2) because it serves as a lid to a larger volume of the deep ocean. Other studies point out the crucial role of the Southern Ocean in the uptake and storage of anthropogenic carbon dioxide and in controlling global biological production. Here we probe the system to determine whether certain regions of the Southern Ocean are more critical than others for air-sea CO(2) balance and the biological export production, by increasing surface nutrient drawdown in an ocean general circulation model. We demonstrate that atmospheric CO(2) and global biological export production are controlled by different regions of the Southern Ocean. The air-sea balance of carbon dioxide is controlled mainly by the biological pump and circulation in the Antarctic deep-water formation region, whereas global export production is controlled mainly by the biological pump and circulation in the Subantarctic intermediate and mode water formation region. The existence of this biogeochemical divide separating the Antarctic from the Subantarctic suggests that it may be possible for climate change or human intervention to modify one of these without greatly altering the other.
Similar articles
- Chapter 1. Impacts of the oceans on climate change.
Reid PC, Fischer AC, Lewis-Brown E, Meredith MP, Sparrow M, Andersson AJ, Antia A, Bates NR, Bathmann U, Beaugrand G, Brix H, Dye S, Edwards M, Furevik T, Gangstø R, Hátún H, Hopcroft RR, Kendall M, Kasten S, Keeling R, Le Quéré C, Mackenzie FT, Malin G, Mauritzen C, Olafsson J, Paull C, Rignot E, Shimada K, Vogt M, Wallace C, Wang Z, Washington R. Reid PC, et al. Adv Mar Biol. 2009;56:1-150. doi: 10.1016/S0065-2881(09)56001-4. Adv Mar Biol. 2009. PMID: 19895974 - Rapid and early export of Phaeocystis antarctica blooms in the Ross Sea, Antarctica.
DiTullio GR, Grebmeier JM, Arrigo KR, Lizotte MP, Robinson DH, Leventer A, Barry JP, VanWoert ML, Dunbar RB. DiTullio GR, et al. Nature. 2000 Apr 6;404(6778):595-8. doi: 10.1038/35007061. Nature. 2000. PMID: 10766240 - Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2.
Watson AJ, Bakker DC, Ridgwell AJ, Boyd PW, Law CS. Watson AJ, et al. Nature. 2000 Oct 12;407(6805):730-3. doi: 10.1038/35037561. Nature. 2000. PMID: 11048716 - Glacial/interglacial variations in atmospheric carbon dioxide.
Sigman DM, Boyle EA. Sigman DM, et al. Nature. 2000 Oct 19;407(6806):859-69. doi: 10.1038/35038000. Nature. 2000. PMID: 11057657 Review. - Impacts of atmospheric anthropogenic nitrogen on the open ocean.
Duce RA, LaRoche J, Altieri K, Arrigo KR, Baker AR, Capone DG, Cornell S, Dentener F, Galloway J, Ganeshram RS, Geider RJ, Jickells T, Kuypers MM, Langlois R, Liss PS, Liu SM, Middelburg JJ, Moore CM, Nickovic S, Oschlies A, Pedersen T, Prospero J, Schlitzer R, Seitzinger S, Sorensen LL, Uematsu M, Ulloa O, Voss M, Ward B, Zamora L. Duce RA, et al. Science. 2008 May 16;320(5878):893-7. doi: 10.1126/science.1150369. Science. 2008. PMID: 18487184 Review.
Cited by
- Seasonal Dynamics of Dissolved Iron on the Antarctic Continental Shelf: Late-Fall Observations From the Terra Nova Bay and Ross Ice Shelf Polynyas.
Sedwick PN, Sohst BM, O'Hara C, Stammerjohn SE, Loose B, Dinniman MS, Buck NJ, Resing JA, Ackley SF. Sedwick PN, et al. J Geophys Res Oceans. 2022 Oct;127(10):e2022JC018999. doi: 10.1029/2022JC018999. Epub 2022 Oct 17. J Geophys Res Oceans. 2022. PMID: 36590600 Free PMC article. - Oxygen depletion recorded in upper waters of the glacial Southern Ocean.
Lu Z, Hoogakker BA, Hillenbrand CD, Zhou X, Thomas E, Gutchess KM, Lu W, Jones L, Rickaby RE. Lu Z, et al. Nat Commun. 2016 Mar 31;7:11146. doi: 10.1038/ncomms11146. Nat Commun. 2016. PMID: 27029225 Free PMC article. - Responses of ocean circulation and carbon cycle to changes in the position of the Southern Hemisphere westerlies at Last Glacial Maximum.
Völker C, Köhler P. Völker C, et al. Paleoceanography. 2013 Dec;28(4):726-739. doi: 10.1002/2013PA002556. Epub 2013 Dec 19. Paleoceanography. 2013. PMID: 26074663 Free PMC article. - Loss of fixed nitrogen causes net oxygen gain in a warmer future ocean.
Oschlies A, Koeve W, Landolfi A, Kähler P. Oschlies A, et al. Nat Commun. 2019 Jun 26;10(1):2805. doi: 10.1038/s41467-019-10813-w. Nat Commun. 2019. PMID: 31243270 Free PMC article. - Anthropogenic carbon dioxide transport in the Southern Ocean driven by Ekman flow.
Ito T, Woloszyn M, Mazloff M. Ito T, et al. Nature. 2010 Jan 7;463(7277):80-3. doi: 10.1038/nature08687. Nature. 2010. PMID: 20054394
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources