Electrostatic DFT map for the complete vibrational amide band of NMA - PubMed (original) (raw)
. 2005 Nov 3;109(43):9747-59.
doi: 10.1021/jp052324l.
Affiliations
- PMID: 16833288
- DOI: 10.1021/jp052324l
Electrostatic DFT map for the complete vibrational amide band of NMA
Tomoyuki Hayashi et al. J Phys Chem A. 2005.
Abstract
An anharmonic vibrational Hamiltonian for the amide I, II, III, and A modes of N-methyl acetamide (NMA), recast in terms of the 19 components of an external electric field and its first and second derivative tensors (electrostatic DFT map), is calculated at the DFT(BPW91/6-31G(d,p)) level. Strong correlations are found between NMA geometry and the amide frequency fluctuations calculated using this Hamiltonian together with the fluctuating solvent electric field obtained from the MD simulations in TIP3 water. The amide I and A frequencies are strongly positively correlated with the C=O and N-H bond lengths. The C=O and C-N amide bond lengths are negatively correlated, suggesting the solvent-induced fluctuations of the contribution of zwitterionic resonance form. Sampling the global electric field in the entire region of the transition charge densities (TCDs) is required for accurate infrared line shape simulations. Collective electrostatic solvent coordinates which represent the fluctuations of the 10 lowest amide fundamental and overtone states are reported. Normal-mode analysis of an NMA-3H(2)O cluster shows that the 660 cm(-1) to 1100 cm(-1) oscillation found in the frequency autocorrelation functions of the amide modes may be ascribed to the two bending vibrations of intermolecular hydrogen bonds with the amide oxygen of NMA.
Similar articles
- On the temperature dependence of amide I frequencies of peptides in solution.
Amunson KE, Kubelka J. Amunson KE, et al. J Phys Chem B. 2007 Aug 23;111(33):9993-8. doi: 10.1021/jp072454p. Epub 2007 Aug 3. J Phys Chem B. 2007. PMID: 17676791 - Collective solvent coordinates for the infrared spectrum of HOD in D2O based on an ab initio electrostatic map.
Hayashi T, la Cour Jansen T, Zhuang W, Mukamel S. Hayashi T, et al. J Phys Chem A. 2005 Jan 13;109(1):64-82. doi: 10.1021/jp046685x. J Phys Chem A. 2005. PMID: 16839090 - Comparative study of electrostatic models for the amide-I and -II modes: linear and two-dimensional infrared spectra.
Maekawa H, Ge NH. Maekawa H, et al. J Phys Chem B. 2010 Jan 28;114(3):1434-46. doi: 10.1021/jp908695g. J Phys Chem B. 2010. PMID: 20050636 - Amide I two-dimensional infrared spectroscopy of proteins.
Ganim Z, Chung HS, Smith AW, Deflores LP, Jones KC, Tokmakoff A. Ganim Z, et al. Acc Chem Res. 2008 Mar;41(3):432-41. doi: 10.1021/ar700188n. Epub 2008 Feb 21. Acc Chem Res. 2008. PMID: 18288813 Review.
Cited by
- 2D-IR experiments and simulations of the coupling between amide-I and ionizable side chains in proteins: application to the Villin headpiece.
Bagchi S, Falvo C, Mukamel S, Hochstrasser RM. Bagchi S, et al. J Phys Chem B. 2009 Aug 13;113(32):11260-73. doi: 10.1021/jp900245s. J Phys Chem B. 2009. PMID: 19618902 Free PMC article. - Sensitivity of 2D IR spectra to peptide helicity: a concerted experimental and simulation study of an octapeptide.
Sengupta N, Maekawa H, Zhuang W, Toniolo C, Mukamel S, Tobias DJ, Ge NH. Sengupta N, et al. J Phys Chem B. 2009 Sep 3;113(35):12037-49. doi: 10.1021/jp901504r. J Phys Chem B. 2009. PMID: 19496555 Free PMC article. - Two-dimensional spectroscopy at infrared and optical frequencies.
Hochstrasser RM. Hochstrasser RM. Proc Natl Acad Sci U S A. 2007 Sep 4;104(36):14190-6. doi: 10.1073/pnas.0704079104. Epub 2007 Jul 30. Proc Natl Acad Sci U S A. 2007. PMID: 17664429 Free PMC article. - Development and validation of transferable amide I vibrational frequency maps for peptides.
Wang L, Middleton CT, Zanni MT, Skinner JL. Wang L, et al. J Phys Chem B. 2011 Apr 7;115(13):3713-24. doi: 10.1021/jp200745r. Epub 2011 Mar 15. J Phys Chem B. 2011. PMID: 21405034 Free PMC article. - Design of an Electrostatic Frequency Map for the NH Stretch of the Protein Backbone and Application to Chiral Sum Frequency Generation Spectroscopy.
Konstantinovsky D, Perets EA, Santiago T, Olesen K, Wang Z, Soudackov AV, Yan ECY, Hammes-Schiffer S. Konstantinovsky D, et al. J Phys Chem B. 2023 Mar 23;127(11):2418-2429. doi: 10.1021/acs.jpcb.3c00217. Epub 2023 Mar 14. J Phys Chem B. 2023. PMID: 36916645 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources