Error propagation in relative real-time reverse transcription polymerase chain reaction quantification models: the balance between accuracy and precision - PubMed (original) (raw)
. 2006 Sep 15;356(2):182-93.
doi: 10.1016/j.ab.2006.06.020. Epub 2006 Jul 14.
Affiliations
- PMID: 16899212
- DOI: 10.1016/j.ab.2006.06.020
Error propagation in relative real-time reverse transcription polymerase chain reaction quantification models: the balance between accuracy and precision
Oddmund Nordgård et al. Anal Biochem. 2006.
Abstract
Real-time reverse transcription polymerase chain reaction (RT-PCR) has gained wide popularity as a sensitive and reliable technique for mRNA quantification. The development of new mathematical models for such quantifications has generally paid little attention to the aspect of error propagation. In this study we evaluate, both theoretically and experimentally, several recent models for relative real-time RT-PCR quantification of mRNA with respect to random error accumulation. We present error propagation expressions for the most common quantification models and discuss the influence of the various components on the total random error. Normalization against a calibrator sample to improve comparability between different runs is shown to increase the overall random error in our system. On the other hand, normalization against multiple reference genes, introduced to improve accuracy, does not increase error propagation compared to normalization against a single reference gene. Finally, we present evidence that sample-specific amplification efficiencies determined from individual amplification curves primarily increase the random error of real-time RT-PCR quantifications and should be avoided. Our data emphasize that the gain of accuracy associated with new quantification models should be validated against the corresponding loss of precision.
Similar articles
- [Use of the real-time RT-PCR method for investigation of small stable RNA expression level in human epidermoid carcinoma cells A431].
Nikitina TV, Nazarova NIu, Tishchenko LI, Tuohimaa P, Sedova VM. Nikitina TV, et al. Tsitologiia. 2003;45(4):392-402. Tsitologiia. 2003. PMID: 14520871 Russian. - Relative quantification based on logistic models for individual polymerase chain reactions.
Chervoneva I, Li Y, Iglewicz B, Waldman S, Hyslop T. Chervoneva I, et al. Stat Med. 2007 Dec 30;26(30):5596-611. doi: 10.1002/sim.3127. Stat Med. 2007. PMID: 17968873 - A new reverse transcription-polymerase chain reaction method for accurate quantification.
Shiao YH. Shiao YH. BMC Biotechnol. 2003 Dec 9;3:22. doi: 10.1186/1472-6750-3-22. BMC Biotechnol. 2003. PMID: 14664723 Free PMC article. - Application of real-time reverse transcriptase-polymerase chain reaction in urological oncology.
Schrader AJ, Lauber J, Lechner O, Heidenreich A, Hofmann R, Buer J. Schrader AJ, et al. J Urol. 2003 May;169(5):1858-64. doi: 10.1097/01.ju.0000047363.03411.6b. J Urol. 2003. PMID: 12686862 Review. - Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references.
Guénin S, Mauriat M, Pelloux J, Van Wuytswinkel O, Bellini C, Gutierrez L. Guénin S, et al. J Exp Bot. 2009;60(2):487-93. doi: 10.1093/jxb/ern305. J Exp Bot. 2009. PMID: 19264760 Review.
Cited by
- Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data.
Ruijter JM, Ramakers C, Hoogaars WM, Karlen Y, Bakker O, van den Hoff MJ, Moorman AF. Ruijter JM, et al. Nucleic Acids Res. 2009 Apr;37(6):e45. doi: 10.1093/nar/gkp045. Epub 2009 Feb 22. Nucleic Acids Res. 2009. PMID: 19237396 Free PMC article. - Simulation of between repeat variability in real time PCR reactions.
Lievens A, Van Aelst S, Van den Bulcke M, Goetghebeur E. Lievens A, et al. PLoS One. 2012;7(11):e47112. doi: 10.1371/journal.pone.0047112. Epub 2012 Nov 26. PLoS One. 2012. PMID: 23189123 Free PMC article. - The Usefulness of qPCR Data for Sample Pre-Assessment and Interpretation of Genetic Typing Results.
Onofri M, Severini S, Tommolini F, Lancia M, Gambelunghe C, Carlini L, Carnevali E. Onofri M, et al. Genes (Basel). 2024 Jun 5;15(6):744. doi: 10.3390/genes15060744. Genes (Basel). 2024. PMID: 38927680 Free PMC article. - Enhanced analysis of real-time PCR data by using a variable efficiency model: FPK-PCR.
Lievens A, Van Aelst S, Van den Bulcke M, Goetghebeur E. Lievens A, et al. Nucleic Acids Res. 2012 Jan;40(2):e10. doi: 10.1093/nar/gkr775. Epub 2011 Nov 18. Nucleic Acids Res. 2012. PMID: 22102586 Free PMC article. - quantGenius: implementation of a decision support system for qPCR-based gene quantification.
Baebler Š, Svalina M, Petek M, Stare K, Rotter A, Pompe-Novak M, Gruden K. Baebler Š, et al. BMC Bioinformatics. 2017 May 25;18(1):276. doi: 10.1186/s12859-017-1688-7. BMC Bioinformatics. 2017. PMID: 28545393 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources