New perspectives on the mechanical basis for airway hyperreactivity and airway hypersensitivity in asthma - PubMed (original) (raw)
. 2006 Dec;101(6):1710-9.
doi: 10.1152/japplphysiol.00344.2006. Epub 2006 Aug 10.
Affiliations
- PMID: 16902064
- DOI: 10.1152/japplphysiol.00344.2006
Free article
New perspectives on the mechanical basis for airway hyperreactivity and airway hypersensitivity in asthma
Derek A Affonce et al. J Appl Physiol (1985). 2006 Dec.
Free article
Erratum in
- J Appl Physiol. 2007 Mar;102(3):1296
Abstract
We revisit the airway wall model of Lambert et. al. (Lambert RK, Wiggs BR, Kuwano K, Hogg JC, and Pare PD. J Appl Physiol 74: 2771-2781, 1993). We examine in detail the notion of a general airway bistability such that the airway lumen can suddenly decrease from a relatively open to a relatively closed condition without needing additional increase in active airway smooth muscle (ASM) tension during the stimulation. The onset of this bistability is an emergent consequence of the balance of forces associated with airway wall properties, parenchymal tissue properties, maximum lung elastic recoil, and the maximum stress that the ASM can generate. In healthy lungs, we find that all these properties reside in conditions that largely prevent the emergence of the bistability even during maximum ASM stimulation. In asthmatic airways, however, the airway wall and ASM remodeling conditions can tip the balance so as to promote the onset of the bistability at a lower dose of ASM stimulation (enhanced sensitivity) and then work to amplify the maximum constriction reached by each airway (enhanced reactivity). Hence, a larger fraction of asthmatic airways can display overall airway hyperreactivity. Simulations studies examine the role of increasing ASM maximum tension, airway wall stiffening, reduced lung volume, and decreased parenchymal tethering. Results predict that the single most important factor causing this airway hyperreactivity is amplified maximum ASM tension and not a thickening of the airway wall per se.
Similar articles
- Sites of allergic airway smooth muscle remodeling and hyperresponsiveness are not associated in the rat.
Siddiqui S, Jo T, Tamaoka M, Shalaby KH, Ghezzo H, Bernabeu M, Martin JG. Siddiqui S, et al. J Appl Physiol (1985). 2010 Oct;109(4):1170-8. doi: 10.1152/japplphysiol.01168.2009. Epub 2010 Jul 22. J Appl Physiol (1985). 2010. PMID: 20651225 - Airway remodeling in asthma amplifies heterogeneities in smooth muscle shortening causing hyperresponsiveness.
Gillis HL, Lutchen KR. Gillis HL, et al. J Appl Physiol (1985). 1999 Jun;86(6):2001-12. doi: 10.1152/jappl.1999.86.6.2001. J Appl Physiol (1985). 1999. PMID: 10368367 - Does the length dependency of airway smooth muscle force contribute to airway hyperresponsiveness?
Lee-Gosselin A, Pascoe CD, Couture C, Paré PD, Bossé Y. Lee-Gosselin A, et al. J Appl Physiol (1985). 2013 Nov 1;115(9):1304-15. doi: 10.1152/japplphysiol.01480.2012. Epub 2013 Aug 22. J Appl Physiol (1985). 2013. PMID: 23970527 - The contribution of airway smooth muscle to airway narrowing and airway hyperresponsiveness in disease.
Martin JG, Duguet A, Eidelman DH. Martin JG, et al. Eur Respir J. 2000 Aug;16(2):349-54. doi: 10.1034/j.1399-3003.2000.16b25.x. Eur Respir J. 2000. PMID: 10968513 Review. - [The relation between morphologic and functional airway changes in bronchial asthma].
Kips JC. Kips JC. Verh K Acad Geneeskd Belg. 2003;65(4):247-65; discussion 265-9. Verh K Acad Geneeskd Belg. 2003. PMID: 14534940 Review. Dutch.
Cited by
- BitterDB database analysis plus cell stiffness screening identify flufenamic acid as the most potent TAS2R14-based relaxant of airway smooth muscle cells for therapeutic bronchodilation.
Ni K, Che B, Gu R, Wang C, Xu H, Li H, Cen S, Luo M, Deng L. Ni K, et al. Theranostics. 2024 Feb 17;14(4):1744-1763. doi: 10.7150/thno.92492. eCollection 2024. Theranostics. 2024. PMID: 38389834 Free PMC article. - Spirometric Response to Bronchodilator and Eucapnic Voluntary Hyperpnea in Adults With Asthma.
Haverkamp HC, Kaminsky DA, McPherson SM, Irvin CG. Haverkamp HC, et al. Respir Care. 2021 Aug;66(8):1282-1290. doi: 10.4187/respcare.08421. Epub 2021 May 18. Respir Care. 2021. PMID: 34006592 Free PMC article. - In vivo assessment of changes to canine airway smooth muscle following bronchial thermoplasty with OR-OCT.
Adams DC, Holz JA, Szabari MV, Hariri LP, Mccrossan AF, Manley CJ, Fleury S, O'Shaughnessy S, Weiner J, Suter MJ. Adams DC, et al. J Appl Physiol (1985). 2021 Jun 1;130(6):1814-1821. doi: 10.1152/japplphysiol.00914.2020. Epub 2021 Apr 22. J Appl Physiol (1985). 2021. PMID: 33886383 Free PMC article. - Reduced biomechanical models for precision-cut lung-slice stretching experiments.
Pybus HJ, Tatler AL, Edgar LT, O'Dea RD, Brook BS. Pybus HJ, et al. J Math Biol. 2021 Mar 15;82(5):35. doi: 10.1007/s00285-021-01578-2. J Math Biol. 2021. PMID: 33721103 Free PMC article. - Important lessons learned from studies on the pharmacology of glucocorticoids in human airway smooth muscle cells: Too much of a good thing may be a problem.
Amrani Y, Panettieri RA, Ramos-Ramirez P, Schaafsma D, Kaczmarek K, Tliba O. Amrani Y, et al. Pharmacol Ther. 2020 Sep;213:107589. doi: 10.1016/j.pharmthera.2020.107589. Epub 2020 May 27. Pharmacol Ther. 2020. PMID: 32473159 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical