Dendritic cells expand antigen-specific Foxp3+ CD25+ CD4+ regulatory T cells including suppressors of alloreactivity - PubMed (original) (raw)

Review

Dendritic cells expand antigen-specific Foxp3+ CD25+ CD4+ regulatory T cells including suppressors of alloreactivity

Sayuri Yamazaki et al. Immunol Rev. 2006 Aug.

Abstract

Thymic derived naturally occurring CD25+ CD4+ T regulatory cells (Tregs) suppress immune responses, including transplantation. Here we discuss the capacity of dendritic cells (DCs) to expand antigen-specific Tregs, particularly polyclonal Tregs directed to alloantigens. Initial studies have shown that mature DCs are specialized antigen-presenting cells (APCs) for expanding antigen-specific CD25+ CD4+ Tregs from TCR transgenic mice. When triggered by specific antigen, these Tregs act back on immature DCs to block the upregulation of CD80 and CD86 costimulatory molecules. More recently, DCs have been used to expand alloantigen-specific CD25+ CD4+ Tregs from the polyclonal repertoire in the presence of interleukin-2 (IL-2). Allogeneic DCs are much more effective than allogeneic spleen cells for expanding CD25+ CD4+ Tregs. The DC-expanded Tregs continue to express high levels of Foxp3, even without supplemental IL-2, whereas spleen cells poorly sustain Foxp3 expression. When suppressive activity is tested, relatively small numbers of DC-expanded CD25+ CD4+ Tregs exert antigen-specific suppression in the mixed leukocyte reaction (MLR), blocking immune responses to the original stimulating strain 10 times more effectively than to third party stimulating cells. DC-expanded Tregs also retard graft versus host disease (GVHD) across full major histocompatibility complex (MHC) barriers. In vitro and in vivo, the alloantigen-specific CD25+ CD4+ Tregs are much more effective suppressors of transplantation reactions than polyclonal populations. We suggest that the expansion of Tregs from a polyclonal repertoire via antigen-presenting DCs will provide a means for antigen-specific control of unwanted immune reactions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources