PAMP recognition and the plant-pathogen arms race - PubMed (original) (raw)
Review
PAMP recognition and the plant-pathogen arms race
Robert A Ingle et al. Bioessays. 2006 Sep.
Abstract
Plants have evolved systems analogous to animal innate immunity that recognise pathogen-associated molecular patterns (PAMPs). PAMP detection is an important component of non-host resistance in plants and serves as an early warning system for the presence of potential pathogens. Binding of a PAMP to the appropriate pattern recognition receptor leads to downstream signalling events and, ultimately, to the induction of basal defence systems. To overcome non-host resistance, pathogens have evolved effectors that target specific regulatory components of the basal defence system. In turn, this has led to the evolution in plants of cultivar-specific resistance mediated by R proteins, which guard the targets of effectors against pathogen manipulation; the arms race continues.
(c) 2006 Wiley periodicals, Inc.
Similar articles
- Pattern-recognition receptors in plant innate immunity.
Zipfel C. Zipfel C. Curr Opin Immunol. 2008 Feb;20(1):10-6. doi: 10.1016/j.coi.2007.11.003. Curr Opin Immunol. 2008. PMID: 18206360 Review. - Elicitation and suppression of microbe-associated molecular pattern-triggered immunity in plant-microbe interactions.
He P, Shan L, Sheen J. He P, et al. Cell Microbiol. 2007 Jun;9(6):1385-96. doi: 10.1111/j.1462-5822.2007.00944.x. Epub 2007 Apr 19. Cell Microbiol. 2007. PMID: 17451411 Review. - The grateful dead: calcium and cell death in plant innate immunity.
Ma W, Berkowitz GA. Ma W, et al. Cell Microbiol. 2007 Nov;9(11):2571-85. doi: 10.1111/j.1462-5822.2007.01031.x. Epub 2007 Aug 21. Cell Microbiol. 2007. PMID: 17714518 Review. - Disabling surveillance: bacterial type III secretion system effectors that suppress innate immunity.
Espinosa A, Alfano JR. Espinosa A, et al. Cell Microbiol. 2004 Nov;6(11):1027-40. doi: 10.1111/j.1462-5822.2004.00452.x. Cell Microbiol. 2004. PMID: 15469432 Review. - Host-pathogen warfare at the plant cell wall.
Hématy K, Cherk C, Somerville S. Hématy K, et al. Curr Opin Plant Biol. 2009 Aug;12(4):406-13. doi: 10.1016/j.pbi.2009.06.007. Epub 2009 Jul 16. Curr Opin Plant Biol. 2009. PMID: 19616468 Review.
Cited by
- Modifications of Xanthomonas axonopodis pv. citri lipopolysaccharide affect the basal response and the virulence process during citrus canker.
Petrocelli S, Tondo ML, Daurelio LD, Orellano EG. Petrocelli S, et al. PLoS One. 2012;7(7):e40051. doi: 10.1371/journal.pone.0040051. Epub 2012 Jul 6. PLoS One. 2012. PMID: 22792211 Free PMC article. - Ectopic expression of rice Xa21 overcomes developmentally controlled resistance to Xanthomonas oryzae pv. oryzae.
Park CJ, Lee SW, Chern M, Sharma R, Canlas PE, Song MY, Jeon JS, Ronald PC. Park CJ, et al. Plant Sci. 2010 Nov;179(5):466-71. doi: 10.1016/j.plantsci.2010.07.008. Plant Sci. 2010. PMID: 21076626 Free PMC article. - The Potato MAP3K StVIK Is Required for the Phytophthora infestans RXLR Effector Pi17316 to Promote Disease.
Murphy F, He Q, Armstrong M, Giuliani LM, Boevink PC, Zhang W, Tian Z, Birch PRJ, Gilroy EM. Murphy F, et al. Plant Physiol. 2018 May;177(1):398-410. doi: 10.1104/pp.18.00028. Epub 2018 Mar 27. Plant Physiol. 2018. PMID: 29588335 Free PMC article. - Tobacco mosaic virus infection results in an increase in recombination frequency and resistance to viral, bacterial, and fungal pathogens in the progeny of infected tobacco plants.
Kathiria P, Sidler C, Golubov A, Kalischuk M, Kawchuk LM, Kovalchuk I. Kathiria P, et al. Plant Physiol. 2010 Aug;153(4):1859-70. doi: 10.1104/pp.110.157263. Epub 2010 May 24. Plant Physiol. 2010. PMID: 20498336 Free PMC article. - The secreted ribonuclease T2 protein FoRnt2 contributes to Fusarium oxysporum virulence.
Qian H, Wang L, Wang B, Liang W. Qian H, et al. Mol Plant Pathol. 2022 Sep;23(9):1346-1360. doi: 10.1111/mpp.13237. Epub 2022 Jun 13. Mol Plant Pathol. 2022. PMID: 35696123 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources