On the use of normal modes in thermal parameter refinement: theory and application to the bovine pancreatic trypsin inhibitor - PubMed (original) (raw)
On the use of normal modes in thermal parameter refinement: theory and application to the bovine pancreatic trypsin inhibitor
R Diamond. Acta Crystallogr A. 1990.
Abstract
A method is presented whereby the amplitude coefficients of molecular normal modes of vibration are treated as independent variables in the treatment of thermal effects in X-ray diffraction, and applied to the bovine pancreatic trypsin inhibitor, form II (P2(1)2(1)2(1), a = 74.1, b = 23.4, c = 28.9 A). It is shown that the description of molecular motion furnished by 892 isotropic temperature factors may be largely reproduced using only 19 molecular thermal parameters from which anisotropic temperature factors may be synthesised for every atom. The method shows that motions and/or disorders external to each molecule are the largest single source of apparent motion, and that the internal motions are comparable to those predicted by Levitt, Sander & Stern.
Similar articles
- Dynamics of folded proteins.
McCammon JA, Gelin BR, Karplus M. McCammon JA, et al. Nature. 1977 Jun 16;267(5612):585-90. doi: 10.1038/267585a0. Nature. 1977. PMID: 301613 - Normal mode refinement: crystallographic refinement of protein dynamic structure. II. Application to human lysozyme.
Kidera A, Inaka K, Matsushima M, Go N. Kidera A, et al. J Mol Biol. 1992 May 20;225(2):477-86. doi: 10.1016/0022-2836(92)90933-b. J Mol Biol. 1992. PMID: 1593631 - Protein normal-mode dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme.
Levitt M, Sander C, Stern PS. Levitt M, et al. J Mol Biol. 1985 Feb 5;181(3):423-47. doi: 10.1016/0022-2836(85)90230-x. J Mol Biol. 1985. PMID: 2580101 - [Information needed to specify a protein structure: structure and thermodynamics of a highly simplified bovine pancreatic trypsin inhibitor].
Kato A, Islam MM, Kuroda Y. Kato A, et al. Tanpakushitsu Kakusan Koso. 2009 Apr;54(5):643-8. Tanpakushitsu Kakusan Koso. 2009. PMID: 19348260 Review. Japanese. No abstract available. - Molecular dynamics simulations in biology.
Karplus M, Petsko GA. Karplus M, et al. Nature. 1990 Oct 18;347(6294):631-9. doi: 10.1038/347631a0. Nature. 1990. PMID: 2215695 Review.
Cited by
- TLS from fundamentals to practice.
Urzhumtsev A, Afonine PV, Adams PD. Urzhumtsev A, et al. Crystallogr Rev. 2013 Jul 1;19(4):230-270. doi: 10.1080/0889311X.2013.835806. Crystallogr Rev. 2013. PMID: 25249713 Free PMC article. - Response of dynamic structure to removal of a disulfide bond: normal mode refinement of C77A/C95A mutant of human lysozyme.
Kidera A, Inaka K, Matsushima M, Go N. Kidera A, et al. Protein Sci. 1994 Jan;3(1):92-102. doi: 10.1002/pro.5560030112. Protein Sci. 1994. PMID: 8142902 Free PMC article. - Microscopic theory of the dielectric properties of proteins.
Simonson T, Perahia D, Brünger AT. Simonson T, et al. Biophys J. 1991 Mar;59(3):670-90. doi: 10.1016/S0006-3495(91)82282-2. Biophys J. 1991. PMID: 1646659 Free PMC article. - X-ray Scattering Studies of Protein Structural Dynamics.
Meisburger SP, Thomas WC, Watkins MB, Ando N. Meisburger SP, et al. Chem Rev. 2017 Jun 28;117(12):7615-7672. doi: 10.1021/acs.chemrev.6b00790. Epub 2017 May 30. Chem Rev. 2017. PMID: 28558231 Free PMC article. Review. - Global dynamics of proteins: bridging between structure and function.
Bahar I, Lezon TR, Yang LW, Eyal E. Bahar I, et al. Annu Rev Biophys. 2010;39:23-42. doi: 10.1146/annurev.biophys.093008.131258. Annu Rev Biophys. 2010. PMID: 20192781 Free PMC article. Review.