TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth - PubMed (original) (raw)
. 2006 Sep 8;126(5):955-68.
doi: 10.1016/j.cell.2006.06.055.
Hongjiao Ouyang, Tianqing Zhu, Charlotta Lindvall, Yian Wang, Xiaojie Zhang, Qian Yang, Christina Bennett, Yuko Harada, Kryn Stankunas, Cun-Yu Wang, Xi He, Ormond A MacDougald, Ming You, Bart O Williams, Kun-Liang Guan
Affiliations
- PMID: 16959574
- DOI: 10.1016/j.cell.2006.06.055
Free article
TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth
Ken Inoki et al. Cell. 2006.
Free article
Abstract
Mutation in the TSC2 tumor suppressor causes tuberous sclerosis complex, a disease characterized by hamartoma formation in multiple tissues. TSC2 inhibits cell growth by acting as a GTPase-activating protein toward Rheb, thereby inhibiting mTOR, a central controller of cell growth. Here, we show that Wnt activates mTOR via inhibiting GSK3 without involving beta-catenin-dependent transcription. GSK3 inhibits the mTOR pathway by phosphorylating TSC2 in a manner dependent on AMPK-priming phosphorylation. Inhibition of mTOR by rapamycin blocks Wnt-induced cell growth and tumor development, suggesting a potential therapeutic value of rapamycin for cancers with activated Wnt signaling. Our results show that, in addition to transcriptional activation, Wnt stimulates translation and cell growth by activating the TSC-mTOR pathway. Furthermore, the sequential phosphorylation of TSC2 by AMPK and GSK3 reveals a molecular mechanism of signal integration in cell growth regulation.
Comment in
- Mind the GAP: Wnt steps onto the mTORC1 train.
Choo AY, Roux PP, Blenis J. Choo AY, et al. Cell. 2006 Sep 8;126(5):834-6. doi: 10.1016/j.cell.2006.08.025. Cell. 2006. PMID: 16959561
Similar articles
- Mind the GAP: Wnt steps onto the mTORC1 train.
Choo AY, Roux PP, Blenis J. Choo AY, et al. Cell. 2006 Sep 8;126(5):834-6. doi: 10.1016/j.cell.2006.08.025. Cell. 2006. PMID: 16959561 - The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses.
Smith EM, Finn SG, Tee AR, Browne GJ, Proud CG. Smith EM, et al. J Biol Chem. 2005 May 13;280(19):18717-27. doi: 10.1074/jbc.M414499200. Epub 2005 Mar 16. J Biol Chem. 2005. PMID: 15772076 - A GSK-3/TSC2/mTOR pathway regulates glucose uptake and GLUT1 glucose transporter expression.
Buller CL, Loberg RD, Fan MH, Zhu Q, Park JL, Vesely E, Inoki K, Guan KL, Brosius FC 3rd. Buller CL, et al. Am J Physiol Cell Physiol. 2008 Sep;295(3):C836-43. doi: 10.1152/ajpcell.00554.2007. Epub 2008 Jul 23. Am J Physiol Cell Physiol. 2008. PMID: 18650261 Free PMC article. - LKB1 and AMP-activated protein kinase control of mTOR signalling and growth.
Shaw RJ. Shaw RJ. Acta Physiol (Oxf). 2009 May;196(1):65-80. doi: 10.1111/j.1748-1716.2009.01972.x. Epub 2009 Feb 19. Acta Physiol (Oxf). 2009. PMID: 19245654 Free PMC article. Review. - GSK3 and its interactions with the PI3K/AKT/mTOR signalling network.
Hermida MA, Dinesh Kumar J, Leslie NR. Hermida MA, et al. Adv Biol Regul. 2017 Aug;65:5-15. doi: 10.1016/j.jbior.2017.06.003. Epub 2017 Jun 27. Adv Biol Regul. 2017. PMID: 28712664 Review.
Cited by
- AMP-activated protein kinase (AMPK)/Ulk1-dependent autophagic pathway contributes to C6 ceramide-induced cytotoxic effects in cultured colorectal cancer HT-29 cells.
Huo HZ, Wang B, Qin J, Guo SY, Liu WY, Gu Y. Huo HZ, et al. Mol Cell Biochem. 2013 Jun;378(1-2):171-81. doi: 10.1007/s11010-013-1608-8. Epub 2013 Mar 19. Mol Cell Biochem. 2013. PMID: 23508272 - AMPK induces degradation of the transcriptional repressor PROX1 impairing branched amino acid metabolism and tumourigenesis.
Wang Y, Luo M, Wang F, Tong Y, Li L, Shu Y, Qiao K, Zhang L, Yan G, Liu J, Ji H, Xie Y, Zhang Y, Gao WQ, Liu Y. Wang Y, et al. Nat Commun. 2022 Nov 24;13(1):7215. doi: 10.1038/s41467-022-34747-y. Nat Commun. 2022. PMID: 36433955 Free PMC article. - Knockdown of GSK3β increases basal autophagy and AMPK signalling in nutrient-laden human aortic endothelial cells.
Weikel KA, Cacicedo JM, Ruderman NB, Ido Y. Weikel KA, et al. Biosci Rep. 2016 Sep 16;36(5):e00382. doi: 10.1042/BSR20160174. Print 2016 Oct. Biosci Rep. 2016. PMID: 27534430 Free PMC article. - An mTORC1-Mdm2-Drosha axis for miRNA biogenesis in response to glucose- and amino acid-deprivation.
Ye P, Liu Y, Chen C, Tang F, Wu Q, Wang X, Liu CG, Liu X, Liu R, Liu Y, Zheng P. Ye P, et al. Mol Cell. 2015 Feb 19;57(4):708-720. doi: 10.1016/j.molcel.2014.12.034. Epub 2015 Jan 29. Mol Cell. 2015. PMID: 25639470 Free PMC article. - MicroRNAs and Glucocorticoid-Induced Apoptosis in Lymphoid Malignancies.
Sionov RV. Sionov RV. ISRN Hematol. 2013;2013:348212. doi: 10.1155/2013/348212. Epub 2013 Jan 29. ISRN Hematol. 2013. PMID: 23431463 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
- R01 DE017439/DE/NIDCR NIH HHS/United States
- R01 DE017439-02/DE/NIDCR NIH HHS/United States
- R01 DK124709/DK/NIDDK NIH HHS/United States
- R21 CA161150/CA/NCI NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous