Estrogen-receptor-alpha exchange and chromatin dynamics are ligand- and domain-dependent - PubMed (original) (raw)
. 2006 Oct 1;119(Pt 19):4101-16.
doi: 10.1242/jcs.03161. Epub 2006 Sep 12.
Affiliations
- PMID: 16968748
- DOI: 10.1242/jcs.03161
Estrogen-receptor-alpha exchange and chromatin dynamics are ligand- and domain-dependent
Z Dave Sharp et al. J Cell Sci. 2006.
Erratum in
- J Cell Sci. 2006 Oct 15;119(Pt 20):4365. Lele, Tanmay T [corrected to Lele, Tanmay P]
Abstract
We report a mammalian-based promoter chromosomal array system developed for single-cell studies of transcription-factor function. Designed after the prolactin promoter-enhancer, it allows for the direct visualization of estrogen receptor alpha (ERalpha) and/or Pit-1 interactions at a physiologically regulated transcription locus. ERalpha- and ligand-dependent cofactor recruitment, large-scale chromatin modifications and transcriptional activity identified a distinct fingerprint of responses for each condition. Ligand-dependent transcription (more than threefold activation compared with vehicle, or complete repression by mRNA fluorescent in situ hybridization) at the array correlated with its state of condensation, which was assayed using a novel high throughput microscopy approach. In support of the nuclear receptor hit-and-run model, photobleaching studies provided direct evidence of very transient ER-array interactions, and revealed ligand-dependent changes in k(off). ERalpha-truncation mutants indicated that helix-12 and interactions with co-regulators influenced both large-scale chromatin modeling and photobleaching recovery times. These data also showed that the ERalpha DNA-binding domain was insufficient for array targeting. Collectively, quantitative observations from this physiologically relevant biosensor suggest stochastic-based dynamics influence gene regulation at the promoter level.
Similar articles
- Ligand-induced large-scale chromatin dynamics as a biosensor for the detection of estrogen receptor subtype selective ligands.
García-Becerra R, Berno V, Ordaz-Rosado D, Sharp ZD, Cooney AJ, Mancini MA, Larrea F. García-Becerra R, et al. Gene. 2010 Jun 15;458(1-2):37-44. doi: 10.1016/j.gene.2010.03.007. Epub 2010 Mar 24. Gene. 2010. PMID: 20347019 - Inhibition of GATA2-dependent transactivation of the TSHbeta gene by ligand-bound estrogen receptor alpha.
Nagayama K, Sasaki S, Matsushita A, Ohba K, Iwaki H, Matsunaga H, Suzuki S, Misawa H, Ishizuka K, Oki Y, Noh JY, Nakamura H. Nagayama K, et al. J Endocrinol. 2008 Oct;199(1):113-25. doi: 10.1677/JOE-08-0128. Epub 2008 Jul 24. J Endocrinol. 2008. PMID: 18653622 - Role of aspartate 351 in transactivation and active conformation of estrogen receptor alpha.
Kim JH, Lee MH, Kim BJ, Kim JH, Han SJ, Kim HY, Stallcup MR. Kim JH, et al. J Mol Endocrinol. 2005 Dec;35(3):449-64. doi: 10.1677/jme.1.01846. J Mol Endocrinol. 2005. PMID: 16326832 - Coregulators and chromatin remodeling in transcriptional control.
Kumar R, Wang RA, Barnes CJ. Kumar R, et al. Mol Carcinog. 2004 Dec;41(4):221-30. doi: 10.1002/mc.20056. Mol Carcinog. 2004. PMID: 15468293 Review. - Molecular dynamics and nuclear receptor function.
Hinojos CA, Sharp ZD, Mancini MA. Hinojos CA, et al. Trends Endocrinol Metab. 2005 Jan-Feb;16(1):12-8. doi: 10.1016/j.tem.2004.11.006. Trends Endocrinol Metab. 2005. PMID: 15620544 Review.
Cited by
- Sensitive image-based chromatin binding assays using inducible ERα to rapidly characterize estrogenic chemicals and mixtures.
Szafran AT, Mancini MG, Stossi F, Mancini MA. Szafran AT, et al. iScience. 2022 Sep 23;25(10):105200. doi: 10.1016/j.isci.2022.105200. eCollection 2022 Oct 21. iScience. 2022. PMID: 36238893 Free PMC article. - Transcriptional enhancers at 40: evolution of a viral DNA element to nuclear architectural structures.
Nair SJ, Suter T, Wang S, Yang L, Yang F, Rosenfeld MG. Nair SJ, et al. Trends Genet. 2022 Oct;38(10):1019-1047. doi: 10.1016/j.tig.2022.05.015. Epub 2022 Jul 7. Trends Genet. 2022. PMID: 35811173 Free PMC article. Review. - The myImageAnalysis project: a web-based application for high-content screening.
Szafran AT, Mancini MA. Szafran AT, et al. Assay Drug Dev Technol. 2014 Jan-Feb;12(1):87-99. doi: 10.1089/adt.2013.532. Assay Drug Dev Technol. 2014. PMID: 24547743 Free PMC article. - Dynamic exchange at regulatory elements during chromatin remodeling underlies assisted loading mechanism.
Voss TC, Schiltz RL, Sung MH, Yen PM, Stamatoyannopoulos JA, Biddie SC, Johnson TA, Miranda TB, John S, Hager GL. Voss TC, et al. Cell. 2011 Aug 19;146(4):544-54. doi: 10.1016/j.cell.2011.07.006. Epub 2011 Aug 11. Cell. 2011. PMID: 21835447 Free PMC article. - Impact of chromatin structure on PR signaling: transition from local to global analysis.
Grøntved L, Hager GL. Grøntved L, et al. Mol Cell Endocrinol. 2012 Jun 24;357(1-2):30-6. doi: 10.1016/j.mce.2011.09.006. Epub 2011 Sep 21. Mol Cell Endocrinol. 2012. PMID: 21958695 Free PMC article. Review.
Publication types
MeSH terms
Substances
Grants and funding
- CA64255/CA/NCI NIH HHS/United States
- DK12345/DK/NIDDK NIH HHS/United States
- DK55622/DK/NIDDK NIH HHS/United States
- GM12345/GM/NIGMS NIH HHS/United States
- HD-07495/HD/NICHD NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources