Temporal processing and adaptation in the songbird auditory forebrain - PubMed (original) (raw)
Temporal processing and adaptation in the songbird auditory forebrain
Katherine I Nagel et al. Neuron. 2006.
Free article
Abstract
Songbird auditory neurons must encode the dynamics of natural sounds at many volumes. We investigated how neural coding depends on the distribution of stimulus intensities. Using reverse-correlation, we modeled responses to amplitude-modulated sounds as the output of a linear filter and a nonlinear gain function, then asked how filters and nonlinearities depend on the stimulus mean and variance. Filter shape depended strongly on mean amplitude (volume): at low mean, most neurons integrated sound over many milliseconds, while at high mean, neurons responded more to local changes in amplitude. Increasing the variance (contrast) of amplitude modulations had less effect on filter shape but decreased the gain of firing in most cells. Both filter and gain changes occurred rapidly after a change in statistics, suggesting that they represent nonlinearities in processing. These changes may permit neurons to signal effectively over a wider dynamic range and are reminiscent of findings in other sensory systems.
Comment in
- From a whisper to a roar: adaptation to the mean and variance of naturalistic sounds.
Baccus SA. Baccus SA. Neuron. 2006 Sep 21;51(6):682-4. doi: 10.1016/j.neuron.2006.09.007. Neuron. 2006. PMID: 16982414
Similar articles
- From a whisper to a roar: adaptation to the mean and variance of naturalistic sounds.
Baccus SA. Baccus SA. Neuron. 2006 Sep 21;51(6):682-4. doi: 10.1016/j.neuron.2006.09.007. Neuron. 2006. PMID: 16982414 - Auditory streaming of amplitude-modulated sounds in the songbird forebrain.
Itatani N, Klump GM. Itatani N, et al. J Neurophysiol. 2009 Jun;101(6):3212-25. doi: 10.1152/jn.91333.2008. Epub 2009 Apr 8. J Neurophysiol. 2009. PMID: 19357341 - Development of selectivity for natural sounds in the songbird auditory forebrain.
Amin N, Doupe A, Theunissen FE. Amin N, et al. J Neurophysiol. 2007 May;97(5):3517-31. doi: 10.1152/jn.01066.2006. Epub 2007 Mar 14. J Neurophysiol. 2007. PMID: 17360830 - Methods for the analysis of auditory processing in the brain.
Theunissen FE, Woolley SM, Hsu A, Fremouw T. Theunissen FE, et al. Ann N Y Acad Sci. 2004 Jun;1016:187-207. doi: 10.1196/annals.1298.020. Ann N Y Acad Sci. 2004. PMID: 15313776 Review. - Song selectivity in the song system and in the auditory forebrain.
Theunissen FE, Amin N, Shaevitz SS, Woolley SM, Fremouw T, Hauber ME. Theunissen FE, et al. Ann N Y Acad Sci. 2004 Jun;1016:222-45. doi: 10.1196/annals.1298.023. Ann N Y Acad Sci. 2004. PMID: 15313778 Review.
Cited by
- Hearing in Complex Environments: Auditory Gain Control, Attention, and Hearing Loss.
Auerbach BD, Gritton HJ. Auerbach BD, et al. Front Neurosci. 2022 Feb 10;16:799787. doi: 10.3389/fnins.2022.799787. eCollection 2022. Front Neurosci. 2022. PMID: 35221899 Free PMC article. Review. - The operating point of the cortex: neurons as large deviation detectors.
Ringach DL, Malone BJ. Ringach DL, et al. J Neurosci. 2007 Jul 18;27(29):7673-83. doi: 10.1523/JNEUROSCI.1048-07.2007. J Neurosci. 2007. PMID: 17634362 Free PMC article. - Dynamic changes in level influence spatial coding in the lateral superior olive.
Park TJ, Brand A, Koch U, Ikebuchi M, Grothe B. Park TJ, et al. Hear Res. 2008 Apr;238(1-2):58-67. doi: 10.1016/j.heares.2007.10.009. Epub 2007 Nov 17. Hear Res. 2008. PMID: 18162347 Free PMC article. - Dynamic range adaptation in primary motor cortical populations.
Rasmussen RG, Schwartz A, Chase SM. Rasmussen RG, et al. Elife. 2017 Apr 18;6:e21409. doi: 10.7554/eLife.21409. Elife. 2017. PMID: 28417848 Free PMC article. - Adaptation to speed in macaque middle temporal and medial superior temporal areas.
Price NS, Born RT. Price NS, et al. J Neurosci. 2013 Mar 6;33(10):4359-68. doi: 10.1523/JNEUROSCI.3165-12.2013. J Neurosci. 2013. PMID: 23467352 Free PMC article.