Mutational analysis of the Medicago glycosyltransferase UGT71G1 reveals residues that control regioselectivity for (iso)flavonoid glycosylation - PubMed (original) (raw)
Comparative Study
. 2006 Nov 10;281(45):34441-7.
doi: 10.1074/jbc.M605767200. Epub 2006 Sep 18.
Affiliations
- PMID: 16982612
- DOI: 10.1074/jbc.M605767200
Free article
Comparative Study
Mutational analysis of the Medicago glycosyltransferase UGT71G1 reveals residues that control regioselectivity for (iso)flavonoid glycosylation
Xian-Zhi He et al. J Biol Chem. 2006.
Free article
Abstract
The plant glycosyltransferase UGT71G1 from the model legume barrel medic (Medicago truncatula) glycosylates flavonoids, isoflavonoids, and triterpenes. It can transfer glucose to each of the five hydroxyl groups of the flavonol quercetin, with the 3'-O-glucoside as the major product, and to the A-ring 7-hydroxyl of the isoflavone genistein. The sugar donor and acceptor binding pockets are located in the N and C termini, respectively, of the recently determined crystal structure of UGT71G1. The residues forming the binding pockets of UGT71G1 were systematically altered by site-directed mutagenesis. Mutation of Phe148 to Val, or Tyr202 to Ala, drastically changed the regioselectivity for quercetin glycosylation from predominantly the 3'-O-position of the B-ring to the 3-O-position of the C ring. The Y202A mutant exhibited comparable catalytic efficiency with quercetin to the wild-type enzyme, whereas efficiency was reduced 3-4-fold in the F148V mutant. The Y202A mutant gained the ability to glycosylate the 5-hydroxyl of genistein. Additional mutations affected the relative specificities for the sugar donors UDP-galactose and UDP-glucuronic acid, although UDP-glucose was always preferred. The results are discussed in relation to the design of novel biocatalysts for production of therapeutic flavonoids.
Similar articles
- Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula.
Shao H, He X, Achnine L, Blount JW, Dixon RA, Wang X. Shao H, et al. Plant Cell. 2005 Nov;17(11):3141-54. doi: 10.1105/tpc.105.035055. Epub 2005 Oct 7. Plant Cell. 2005. PMID: 16214900 Free PMC article. - Single amino acid mutations of Medicago glycosyltransferase UGT85H2 enhance activity and impart reversibility.
Modolo LV, Escamilla-Treviño LL, Dixon RA, Wang X. Modolo LV, et al. FEBS Lett. 2009 Jun 18;583(12):2131-5. doi: 10.1016/j.febslet.2009.05.046. Epub 2009 Jun 3. FEBS Lett. 2009. PMID: 19500551 - Crystal structures of glycosyltransferase UGT78G1 reveal the molecular basis for glycosylation and deglycosylation of (iso)flavonoids.
Modolo LV, Li L, Pan H, Blount JW, Dixon RA, Wang X. Modolo LV, et al. J Mol Biol. 2009 Oct 9;392(5):1292-302. doi: 10.1016/j.jmb.2009.08.017. Epub 2009 Aug 13. J Mol Biol. 2009. PMID: 19683002 - Molecular and Structural Characterization of a Promiscuous C-Glycosyltransferase from Trollius chinensis.
He JB, Zhao P, Hu ZM, Liu S, Kuang Y, Zhang M, Li B, Yun CH, Qiao X, Ye M. He JB, et al. Angew Chem Int Ed Engl. 2019 Aug 12;58(33):11513-11520. doi: 10.1002/anie.201905505. Epub 2019 Jul 8. Angew Chem Int Ed Engl. 2019. PMID: 31163097 Review. - Triterpenoid-biosynthetic UDP-glycosyltransferases from plants.
Rahimi S, Kim J, Mijakovic I, Jung KH, Choi G, Kim SC, Kim YJ. Rahimi S, et al. Biotechnol Adv. 2019 Nov 15;37(7):107394. doi: 10.1016/j.biotechadv.2019.04.016. Epub 2019 May 9. Biotechnol Adv. 2019. PMID: 31078628 Review.
Cited by
- Semirational design and engineering of grapevine glucosyltransferases for enhanced activity and modified product selectivity.
Joshi R, Trinkl J, Haugeneder A, Härtl K, Franz-Oberdorf K, Giri A, Hoffmann T, Schwab W. Joshi R, et al. Glycobiology. 2019 Oct 21;29(11):765-775. doi: 10.1093/glycob/cwz056. Glycobiology. 2019. PMID: 31361022 Free PMC article. - Involvement of three putative glucosyltransferases from the UGT72 family in flavonol glucoside/rhamnoside biosynthesis in Lotus japonicus seeds.
Yin Q, Shen G, Chang Z, Tang Y, Gao H, Pang Y. Yin Q, et al. J Exp Bot. 2017 Jan 1;68(3):597-612. doi: 10.1093/jxb/erw420. J Exp Bot. 2017. PMID: 28204516 Free PMC article. - Structural Insights into the Catalytic Mechanism of a Plant Diterpene Glycosyltransferase SrUGT76G1.
Liu Z, Li J, Sun Y, Zhang P, Wang Y. Liu Z, et al. Plant Commun. 2019 Sep 28;1(1):100004. doi: 10.1016/j.xplc.2019.100004. eCollection 2020 Jan 13. Plant Commun. 2019. PMID: 33404544 Free PMC article. - Structural basis for acceptor-substrate recognition of UDP-glucose: anthocyanidin 3-O-glucosyltransferase from Clitoria ternatea.
Hiromoto T, Honjo E, Noda N, Tamada T, Kazuma K, Suzuki M, Blaber M, Kuroki R. Hiromoto T, et al. Protein Sci. 2015 Mar;24(3):395-407. doi: 10.1002/pro.2630. Epub 2015 Jan 28. Protein Sci. 2015. PMID: 25556637 Free PMC article. - Characterization of a glucosyltransferase enzyme involved in the formation of kaempferol and quercetin sophorosides in Crocus sativus.
Trapero A, Ahrazem O, Rubio-Moraga A, Jimeno ML, Gómez MD, Gómez-Gómez L. Trapero A, et al. Plant Physiol. 2012 Aug;159(4):1335-54. doi: 10.1104/pp.112.198069. Epub 2012 May 30. Plant Physiol. 2012. PMID: 22649274 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases