Plasticity of perisynaptic astroglia during synaptogenesis in the mature rat hippocampus - PubMed (original) (raw)

. 2007 Jan 1;55(1):13-23.

doi: 10.1002/glia.20415.

Affiliations

Plasticity of perisynaptic astroglia during synaptogenesis in the mature rat hippocampus

Mark R Witcher et al. Glia. 2007.

Abstract

Astroglia are integral components of synapse formation and maturation during development. Less is known about how astroglia might influence synaptogenesis in the mature brain. Preparation of mature hippocampal slices results in synapse loss followed by recuperative synaptogenesis during subsequent maintenance in vitro. Hence, this model system was used to discern whether perisynaptic astroglial processes are similarly plastic, associating more or less with recently formed synapses in mature brain slices. Perisynaptic astroglia was quantified through serial section electron microscopy in perfusion-fixed or sliced hippocampus from adult male Long-Evans rats that were 65-75 days old. Fewer synapses had perisynaptic astroglia in the recovered hippocampal slices (42.4% +/- 3.4%) than in the intact hippocampus (62.2% +/- 2.6%), yet synapses were larger when perisynaptic astroglia was present (0.055 +/- 0.003 microm2) than when it was absent (0.036 +/- 0.004 microm2) in both conditions. Importantly, the length of the synaptic perimeter surrounded by perisynaptic astroglia and the distance between neighboring synapses was not proportional to synapse size. Instead, larger synapses had longer astroglia-free perimeters where substances could escape from or enter into the synaptic clefts. Thus, smaller presumably newer synapses as well as established larger synapses have equal access to extracellular glutamate and secreted astroglial factors, which may facilitate recuperative synaptogenesis. These findings suggest that as synapses enlarge and release more neurotransmitter, they attract astroglial processes to a discrete portion of their perimeters, further enhancing synaptic efficacy without limiting the potential for cross talk with neighboring synapses in the mature rat hippocampus.

Copyright 2006 Wiley-Liss, Inc.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

Grants and funding

LinkOut - more resources