The protein-nanomaterial interface - PubMed (original) (raw)
Review
The protein-nanomaterial interface
Prashanth Asuri et al. Curr Opin Biotechnol. 2006 Dec.
Abstract
Developments in the past few years have illustrated the potentially revolutionizing impact of nanomaterials, especially in biomedical imaging, drug delivery, biosensing and the design of functional nanocomposites. Methods to effectively interface proteins with nanomaterials for realizing these applications continue to evolve. Proteins are being used to control both the synthesis and assembly of nanomaterials. There has also been an increasing interest in understanding the influence of nanomaterials on the structure and function of proteins. Understanding and controlling the protein-nanomaterial interface will be crucial for designing functional protein-nanomaterial conjugates and assemblies.
Similar articles
- Nanobiotechnology: protein-nanomaterial interactions.
Kane RS, Stroock AD. Kane RS, et al. Biotechnol Prog. 2007 Mar-Apr;23(2):316-9. doi: 10.1021/bp060388n. Epub 2007 Mar 3. Biotechnol Prog. 2007. PMID: 17335286 Review. - Splendid one-dimensional nanostructures of zinc oxide: a new nanomaterial family for nanotechnology.
Wang ZL. Wang ZL. ACS Nano. 2008 Oct 28;2(10):1987-92. doi: 10.1021/nn800631r. ACS Nano. 2008. PMID: 19206442 - Mastering the complexity of DNA nanostructures.
Brucale M, Zuccheri G, Samorì B. Brucale M, et al. Trends Biotechnol. 2006 May;24(5):235-43. doi: 10.1016/j.tibtech.2006.02.009. Epub 2006 Mar 15. Trends Biotechnol. 2006. PMID: 16542743 - Functional DNA nanotechnology: emerging applications of DNAzymes and aptamers.
Lu Y, Liu J. Lu Y, et al. Curr Opin Biotechnol. 2006 Dec;17(6):580-8. doi: 10.1016/j.copbio.2006.10.004. Epub 2006 Oct 23. Curr Opin Biotechnol. 2006. PMID: 17056247 Review. - Molecular self-assembly: another brick in the wall.
Zhang S. Zhang S. Nat Nanotechnol. 2006 Dec;1(3):169-70. doi: 10.1038/nnano.2006.154. Nat Nanotechnol. 2006. PMID: 18654179 No abstract available.
Cited by
- Atomic Details of Carbon-Based Nanomolecules Interacting with Proteins.
Di Costanzo L, Geremia S. Di Costanzo L, et al. Molecules. 2020 Aug 4;25(15):3555. doi: 10.3390/molecules25153555. Molecules. 2020. PMID: 32759758 Free PMC article. Review. - Conformational temperature-dependent behavior of a histone H2AX: a coarse-grained Monte Carlo approach via knowledge-based interaction potentials.
Fritsche M, Pandey RB, Farmer BL, Heermann DW. Fritsche M, et al. PLoS One. 2012;7(3):e32075. doi: 10.1371/journal.pone.0032075. Epub 2012 Mar 19. PLoS One. 2012. PMID: 22442661 Free PMC article. - Supramolecular protein engineering: design of zinc-stapled insulin hexamers as a long acting depot.
Phillips NB, Wan ZL, Whittaker L, Hu SQ, Huang K, Hua QX, Whittaker J, Ismail-Beigi F, Weiss MA. Phillips NB, et al. J Biol Chem. 2010 Apr 16;285(16):11755-9. doi: 10.1074/jbc.C110.105825. Epub 2010 Feb 24. J Biol Chem. 2010. PMID: 20181952 Free PMC article. - Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy.
Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE. Aggarwal P, et al. Adv Drug Deliv Rev. 2009 Jun 21;61(6):428-37. doi: 10.1016/j.addr.2009.03.009. Epub 2009 Apr 17. Adv Drug Deliv Rev. 2009. PMID: 19376175 Free PMC article. Review. - Salt effects on surface-tethered peptides in solution.
Feng J, Wong KY, Lynch GC, Gao X, Pettitt BM. Feng J, et al. J Phys Chem B. 2009 Jul 16;113(28):9472-8. doi: 10.1021/jp902537f. J Phys Chem B. 2009. PMID: 19548651 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous