The potential of Aedes triseriatus (Diptera: Culicidae) as an enzootic vector of West Nile virus - PubMed (original) (raw)
The potential of Aedes triseriatus (Diptera: Culicidae) as an enzootic vector of West Nile virus
S M Erickson et al. J Med Entomol. 2006 Sep.
Abstract
The susceptibility of Aedes triseriatus (Say) (Diptera: Culicidae) to low levels of West Nile virus (family Flaviviridae, genus Flavivirus, WNV) was determined and compared with that of Culex pipiens L. to assess the likelihood of its participation in an enzootic cycle involving mammals. Ae. triseriatus and Cx. pipiens were exposed to WNV by feeding on baby chickens with WNV serum titers ranging from 10(4.1 +/- 0.1) to 10(8.6 +/- 0.1) plaque-forming units (PFU)/ml and from 10(4.1 +/- 0.1) to 10(7.0) PFU/ml, respectively. Infection rates and 95% confidence intervals (CIs) of 8% (4, 14) and 25% (15, 38) occurred in Ae. triseriatus and Cx. pipiens after feeding on chickens with WNV titers of 10(4.1 +/- 0.1) PFU/ml and increased to 65% (49, 79) and 100% (72, 100) in Ae. triseriatus and Cx. pipiens after feeding on chickens with titers of 10(7.1 +/- 0.1) PFU/ml. The mean infection rate of Ae. triseriatus ranged from 97% (84, 100) to 100% (79, 100) after feeding on chickens with WNV titers of > or = 10(8.2) PFU/ml. The infectious dose (ID)50 values for Ae. triseriatus and Cx. pipiens were 10(6.5) (6.4, 6.7) and 10(4.9) (4.6, 5.1) PFU/ml, respectively. The combined estimated transmission rate of Ae. triseriatus at 14 and 18 d after feeding on chickens with a mean WNV titer of 10(8.6 +/- 0.1) PFU/ml was 55%. Although Ae. triseriatus is significantly less susceptible to WNV than Cx. pipiens, the susceptibility of Ae. triseriatus to WNV titers < 10(5.0) PFU/ml and its ability to transmit WNV suggest that Ae. triseriatus has the potential to be an enzootic vector among mammalian populations.
Similar articles
- Vector competence of Aedes vexans (Diptera: Culicidae) for West Nile virus and potential as an enzootic vector.
Tiawsirisup S, Kinley JR, Tucker BJ, Evans RB, Rowley WA, Platt KB. Tiawsirisup S, et al. J Med Entomol. 2008 May;45(3):452-7. doi: 10.1603/0022-2585(2008)45[452:VCOAVD]2.0.CO;2. J Med Entomol. 2008. PMID: 18533439 - A comparision of West Nile Virus transmission by Ochlerotatus trivittatus (COQ.), Culex pipiens (L.), and Aedes albopictus (Skuse).
Tiawsirisup S, Platt KB, Evans RB, Rowley WA. Tiawsirisup S, et al. Vector Borne Zoonotic Dis. 2005 Spring;5(1):40-7. doi: 10.1089/vbz.2005.5.40. Vector Borne Zoonotic Dis. 2005. PMID: 15815148 - Susceptibility of Ochlerotatus trivittatus (Coq.), Aedes albopictus (Skuse), and Culex pipiens (L.) to West Nile virus infection.
Tiawsirisup S, Platt KB, Evans RB, Rowley WA. Tiawsirisup S, et al. Vector Borne Zoonotic Dis. 2004 Fall;4(3):190-7. doi: 10.1089/vbz.2004.4.190. Vector Borne Zoonotic Dis. 2004. PMID: 15631062 - The contribution of Culex pipiens complex mosquitoes to transmission and persistence of West Nile virus in North America.
Andreadis TG. Andreadis TG. J Am Mosq Control Assoc. 2012 Dec;28(4 Suppl):137-51. doi: 10.2987/8756-971X-28.4s.137. J Am Mosq Control Assoc. 2012. PMID: 23401954 Review. - West Nile virus: the Indian scenario.
Paramasivan R, Mishra AC, Mourya DT. Paramasivan R, et al. Indian J Med Res. 2003 Sep;118:101-8. Indian J Med Res. 2003. PMID: 14700342 Review.
Cited by
- Extreme resistance to S-methoprene in field-collected Culex pipiens (Diptera: Culicidae) across the Chicago, IL region.
Lopez K, Harbison J, Irwin P, Erkapic A, Holub R, Blanco C, Paskewitz S, Clifton M, Bartholomay L. Lopez K, et al. Sci Rep. 2024 Aug 3;14(1):18001. doi: 10.1038/s41598-024-69066-3. Sci Rep. 2024. PMID: 39097646 Free PMC article. - West Nile virus viremia in eastern chipmunks (Tamias striatus) sufficient for infecting different mosquitoes.
Platt KB, Tucker BJ, Halbur PG, Tiawsirisup S, Blitvich BJ, Fabiosa FG, Bartholomay LC, Rowley WA. Platt KB, et al. Emerg Infect Dis. 2007 Jun;13(6):831-7. doi: 10.3201/eid1306.061008. Emerg Infect Dis. 2007. PMID: 17553220 Free PMC article. - A metapopulation model to simulate West Nile virus circulation in Western Africa, Southern Europe and the Mediterranean basin.
Durand B, Balança G, Baldet T, Chevalier V. Durand B, et al. Vet Res. 2010 May-Jun;41(3):32. doi: 10.1051/vetres/2010004. Epub 2010 Jan 18. Vet Res. 2010. PMID: 20167194 Free PMC article. - Susceptibility of fox squirrels (Sciurus niger) to West Nile virus by oral exposure.
Tiawsirisup S, Blitvich BJ, Tucker BJ, Halbur PG, Bartholomay LC, Rowley WA, Platt KB. Tiawsirisup S, et al. Vector Borne Zoonotic Dis. 2010 Mar;10(2):207-9. doi: 10.1089/vbz.2008.0158. Vector Borne Zoonotic Dis. 2010. PMID: 19402765 Free PMC article. - Infection, dissemination, and transmission of a West Nile virus green fluorescent protein infectious clone by Culex pipiens quinquefasciatus mosquitoes.
McGee CE, Shustov AV, Tsetsarkin K, Frolov IV, Mason PW, Vanlandingham DL, Higgs S. McGee CE, et al. Vector Borne Zoonotic Dis. 2010 Apr;10(3):267-74. doi: 10.1089/vbz.2009.0067. Vector Borne Zoonotic Dis. 2010. PMID: 19619041 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical