Sequence dependence of BNIP3 transmembrane domain dimerization implicates side-chain hydrogen bonding and a tandem GxxxG motif in specific helix-helix interactions - PubMed (original) (raw)
. 2006 Dec 15;364(5):974-90.
doi: 10.1016/j.jmb.2006.09.065. Epub 2006 Sep 29.
Affiliations
- PMID: 17049556
- DOI: 10.1016/j.jmb.2006.09.065
Sequence dependence of BNIP3 transmembrane domain dimerization implicates side-chain hydrogen bonding and a tandem GxxxG motif in specific helix-helix interactions
Endah S Sulistijo et al. J Mol Biol. 2006.
Abstract
The transmembrane domain of the pro-apoptotic protein BNIP3 self-associates strongly in membranes and in detergents. We have used site-directed mutagenesis to analyze the sequence dependence of BNIP3 transmembrane domain dimerization, from which we infer the physical basis for strong and specific helix-helix interactions in this system. Hydrophobic substitutions identify six residues as critical to dimerization, and the pattern of sensitive residues suggests that the BNIP3 helices interact at a right-handed crossing angle. Based on the dimerization propensities of single point mutants, we propose that: polar residues His173 and Ser172 make inter-monomer hydrogen bonds to one another through their side-chains; Ala176, Gly180, and Gly184 form a tandem GxxxG motif that allows close approach of the helices; and Ile183 makes inter-monomer van der Waals contacts. Since neither the tandem GxxxG motif nor the hydrogen bonding pair is sufficient to drive dimerization, our results demonstrate the importance of sequence context for either hydrogen bonding or GxxxG motif involvement in BNIP3 transmembrane helix-helix interactions. In this study, hydrophobic substitutions away from the six interfacial positions have almost no effect on dimerization, confirming the expectation that hydrophobic replacements affect helix-helix interactions only if they interfere with packing or hydrogen bonding by interfacial residues. However, changes to slightly polar residues are somewhat disruptive even when located away from the interface, and the degree of disruption correlates with the decrease in hydrophobicity. Changing the hydrophobicity of the BNIP3 transmembrane domain alters its helicity and protection of its backbone amides. We suggest that polar substitutions decrease the fraction of dimer by stabilizing an unfolded monomeric state of the transmembrane span, rather than by affecting helix-helix interactions. This result has broad implications for interpreting the sequence dependence of membrane protein stability in detergents.
Similar articles
- Intermonomer hydrogen bonds enhance GxxxG-driven dimerization of the BNIP3 transmembrane domain: roles for sequence context in helix-helix association in membranes.
Lawrie CM, Sulistijo ES, MacKenzie KR. Lawrie CM, et al. J Mol Biol. 2010 Mar 5;396(4):924-36. doi: 10.1016/j.jmb.2009.12.023. Epub 2009 Dec 21. J Mol Biol. 2010. PMID: 20026130 Free PMC article. - Sequence-specific dimerization of the transmembrane domain of the "BH3-only" protein BNIP3 in membranes and detergent.
Sulistijo ES, Jaszewski TM, MacKenzie KR. Sulistijo ES, et al. J Biol Chem. 2003 Dec 19;278(51):51950-6. doi: 10.1074/jbc.M308429200. Epub 2003 Oct 6. J Biol Chem. 2003. PMID: 14532263 - Structural basis for dimerization of the BNIP3 transmembrane domain.
Sulistijo ES, Mackenzie KR. Sulistijo ES, et al. Biochemistry. 2009 Jun 16;48(23):5106-20. doi: 10.1021/bi802245u. Biochemistry. 2009. PMID: 19415897 - Role of GxxxG Motifs in Transmembrane Domain Interactions.
Teese MG, Langosch D. Teese MG, et al. Biochemistry. 2015 Aug 25;54(33):5125-35. doi: 10.1021/acs.biochem.5b00495. Epub 2015 Aug 13. Biochemistry. 2015. PMID: 26244771 Review. - Transmembrane helix-helix interactions are modulated by the sequence context and by lipid bilayer properties.
Cymer F, Veerappan A, Schneider D. Cymer F, et al. Biochim Biophys Acta. 2012 Apr;1818(4):963-73. doi: 10.1016/j.bbamem.2011.07.035. Epub 2011 Jul 31. Biochim Biophys Acta. 2012. PMID: 21827736 Review.
Cited by
- Mitophagy: A Potential Target for Pressure Overload-Induced Cardiac Remodelling.
Shao R, Li J, Qu T, Liao Y, Chen M. Shao R, et al. Oxid Med Cell Longev. 2022 Sep 27;2022:2849985. doi: 10.1155/2022/2849985. eCollection 2022. Oxid Med Cell Longev. 2022. PMID: 36204518 Free PMC article. Review. - BNIP3 Protein Suppresses PINK1 Kinase Proteolytic Cleavage to Promote Mitophagy.
Zhang T, Xue L, Li L, Tang C, Wan Z, Wang R, Tan J, Tan Y, Han H, Tian R, Billiar TR, Tao WA, Zhang Z. Zhang T, et al. J Biol Chem. 2016 Oct 7;291(41):21616-21629. doi: 10.1074/jbc.M116.733410. Epub 2016 Aug 15. J Biol Chem. 2016. PMID: 27528605 Free PMC article. - Overexpression of BH3-Only Protein BNIP3 Leads to Enhanced Tumor Growth.
Vijayalingam S, Pillai SG, Rashmi R, Subramanian T, Sagartz JE, Chinnadurai G. Vijayalingam S, et al. Genes Cancer. 2010 Sep;1(9):964-71. doi: 10.1177/1947601910386110. Genes Cancer. 2010. PMID: 21779475 Free PMC article. - BNIP3 subfamily BH3-only proteins: mitochondrial stress sensors in normal and pathological functions.
Chinnadurai G, Vijayalingam S, Gibson SB. Chinnadurai G, et al. Oncogene. 2008 Dec;27 Suppl 1(Suppl 1):S114-27. doi: 10.1038/onc.2009.49. Oncogene. 2008. PMID: 19641497 Free PMC article. Review. - Changes in apparent free energy of helix-helix dimerization in a biological membrane due to point mutations.
Duong MT, Jaszewski TM, Fleming KG, MacKenzie KR. Duong MT, et al. J Mol Biol. 2007 Aug 10;371(2):422-34. doi: 10.1016/j.jmb.2007.05.026. Epub 2007 May 18. J Mol Biol. 2007. PMID: 17570394 Free PMC article.