Sustained activity of calcium release-activated calcium channels requires translocation of mitochondria to the plasma membrane - PubMed (original) (raw)

. 2006 Dec 29;281(52):40302-9.

doi: 10.1074/jbc.M607896200. Epub 2006 Oct 20.

Affiliations

Free article

Sustained activity of calcium release-activated calcium channels requires translocation of mitochondria to the plasma membrane

Ariel Quintana et al. J Biol Chem. 2006.

Free article

Abstract

A rise of the intracellular Ca(2+) concentration has multiple signaling functions. Sustained Ca(2+) influx across plasma membrane through calcium release-activated calcium (CRAC) channels is required for T-cell development in the thymus, gene transcription, and proliferation and differentiation of naïve T-cells into armed effectors cells. Intracellular Ca(2+) signals are shaped by mitochondria, which function as a highly dynamic Ca(2+) buffer. However, the precise role of mitochondria for Ca(2+)-dependent T-cell activation is unknown. Here we have shown that mitochondria are translocated to the plasma membrane as a consequence of Ca(2+) influx and that this directed movement is essential to sustain Ca(2+) influx through CRAC channels. The decreased distance between mitochondria and the plasma membrane enabled mitochondria to take up large amounts of inflowing Ca(2+) at the plasma membrane, thereby preventing Ca(2+)-dependent inactivation of CRAC channels and sustaining Ca(2+) signals. Inhibition of kinesin-dependent mitochondrial movement along microtubules abolished mitochondrial translocation and reduced sustained Ca(2+) signals. Our results show how a directed movement of mitochondria is used to control important cellular functions such as Ca(2+)-dependent T-cell activation.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources