Mathematical modeling of cancer progression and response to chemotherapy - PubMed (original) (raw)
Review
Mathematical modeling of cancer progression and response to chemotherapy
Sandeep Sanga et al. Expert Rev Anticancer Ther. 2006 Oct.
Abstract
The complex, constantly evolving and multifaceted nature of cancer has made it difficult to identify unique molecular and pathophysiological signatures for each disease variant, consequently hindering development of effective therapies. Mathematical modeling and computer simulation are tools that can provide a robust framework to better understand cancer progression and response to chemotherapy. Successful therapeutic agents must overcome biological barriers occurring at multiple space and time scales and still reach targets at sufficient concentrations. A multiscale computer simulator founded on the integration of experimental data and mathematical models can provide valuable insights into these processes and establish a technology platform for analyzing the effectiveness of chemotherapeutic drugs, with the potential to cost-effectively and efficiently screen drug candidates during the drug-development process.
Similar articles
- An integrated network-based mechanistic model for tumor growth dynamics under drug administration.
Ribeiro D, Pinto JM. Ribeiro D, et al. Comput Biol Med. 2009 Apr;39(4):368-84. doi: 10.1016/j.compbiomed.2009.01.014. Epub 2009 Mar 13. Comput Biol Med. 2009. PMID: 19285661 - Hypothesis testing via integrated computer modeling and digital fluorescence microscopy.
Gardner MK, Odde DJ, Bloom K. Gardner MK, et al. Methods. 2007 Feb;41(2):232-7. doi: 10.1016/j.ymeth.2006.08.002. Methods. 2007. PMID: 17189865 - Chemotherapy may be delivered based on an integrated view of tumour dynamics.
Ribba B, You B, Tod M, Girard P, Tranchand B, Trillet-Lenoir V, Freyer G. Ribba B, et al. IET Syst Biol. 2009 May;3(3):180-90. doi: 10.1049/iet-syb.2008.0104. IET Syst Biol. 2009. PMID: 19449978 - [Development of antituberculous drugs: current status and future prospects].
Tomioka H, Namba K. Tomioka H, et al. Kekkaku. 2006 Dec;81(12):753-74. Kekkaku. 2006. PMID: 17240921 Review. Japanese. - Molecular-targeted therapies: lessons from years of clinical development.
Rosa DD, Ismael G, Lago LD, Awada A. Rosa DD, et al. Cancer Treat Rev. 2008 Feb;34(1):61-80. doi: 10.1016/j.ctrv.2007.07.019. Epub 2007 Sep 10. Cancer Treat Rev. 2008. PMID: 17826917 Review.
Cited by
- Multiparameter computational modeling of tumor invasion.
Bearer EL, Lowengrub JS, Frieboes HB, Chuang YL, Jin F, Wise SM, Ferrari M, Agus DB, Cristini V. Bearer EL, et al. Cancer Res. 2009 May 15;69(10):4493-501. doi: 10.1158/0008-5472.CAN-08-3834. Epub 2009 Apr 14. Cancer Res. 2009. PMID: 19366801 Free PMC article. - The mathematics of cancer: integrating quantitative models.
Altrock PM, Liu LL, Michor F. Altrock PM, et al. Nat Rev Cancer. 2015 Dec;15(12):730-45. doi: 10.1038/nrc4029. Nat Rev Cancer. 2015. PMID: 26597528 Review. - In silico cancer modeling: is it ready for prime time?
Deisboeck TS, Zhang L, Yoon J, Costa J. Deisboeck TS, et al. Nat Clin Pract Oncol. 2009 Jan;6(1):34-42. doi: 10.1038/ncponc1237. Epub 2008 Oct 14. Nat Clin Pract Oncol. 2009. PMID: 18852721 Free PMC article. Review. - Computational approaches to analyse and predict small molecule transport and distribution at cellular and subcellular levels.
Min KA, Zhang X, Yu JY, Rosania GR. Min KA, et al. Biopharm Drug Dispos. 2014 Jan;35(1):15-32. doi: 10.1002/bdd.1879. Epub 2013 Dec 10. Biopharm Drug Dispos. 2014. PMID: 24218242 Free PMC article. Review. - Mathematical modeling as a tool for planning anticancer therapy.
Swierniak A, Kimmel M, Smieja J. Swierniak A, et al. Eur J Pharmacol. 2009 Dec 25;625(1-3):108-21. doi: 10.1016/j.ejphar.2009.08.041. Epub 2009 Oct 13. Eur J Pharmacol. 2009. PMID: 19825370 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources