Classification of fMRI independent components using IC-fingerprints and support vector machine classifiers - PubMed (original) (raw)
Classification of fMRI independent components using IC-fingerprints and support vector machine classifiers
Federico De Martino et al. Neuroimage. 2007.
Abstract
We present a general method for the classification of independent components (ICs) extracted from functional MRI (fMRI) data sets. The method consists of two steps. In the first step, each fMRI-IC is associated with an IC-fingerprint, i.e., a representation of the component in a multidimensional space of parameters. These parameters are post hoc estimates of global properties of the ICs and are largely independent of a specific experimental design and stimulus timing. In the second step a machine learning algorithm automatically separates the IC-fingerprints into six general classes after preliminary training performed on a small subset of expert-labeled components. We illustrate this approach in a multisubject fMRI study employing visual structure-from-motion stimuli encoding faces and control random shapes. We show that: (1) IC-fingerprints are a valuable tool for the inspection, characterization and selection of fMRI-ICs and (2) automatic classifications of fMRI-ICs in new subjects present a high correspondence with those obtained by expert visual inspection of the components. Importantly, our classification procedure highlights several neurophysiologically interesting processes. The most intriguing of which is reflected, with high intra- and inter-subject reproducibility, in one IC exhibiting a transiently task-related activation in the 'face' region of the primary sensorimotor cortex. This suggests that in addition to or as part of the mirror system, somatotopic regions of the sensorimotor cortex are involved in disambiguating the perception of a moving body part. Finally, we show that the same classification algorithm can be successfully applied, without re-training, to fMRI collected using acquisition parameters, stimulation modality and timing considerably different from those used for training.
Similar articles
- Classifying brain states and determining the discriminating activation patterns: Support Vector Machine on functional MRI data.
Mourão-Miranda J, Bokde AL, Born C, Hampel H, Stetter M. Mourão-Miranda J, et al. Neuroimage. 2005 Dec;28(4):980-95. doi: 10.1016/j.neuroimage.2005.06.070. Epub 2005 Nov 4. Neuroimage. 2005. PMID: 16275139 Clinical Trial. - Towards natural stimulation in fMRI--issues of data analysis.
Malinen S, Hlushchuk Y, Hari R. Malinen S, et al. Neuroimage. 2007 Mar;35(1):131-9. doi: 10.1016/j.neuroimage.2006.11.015. Epub 2007 Jan 8. Neuroimage. 2007. PMID: 17208459 - Unsupervised analysis of fMRI data using kernel canonical correlation.
Hardoon DR, Mourão-Miranda J, Brammer M, Shawe-Taylor J. Hardoon DR, et al. Neuroimage. 2007 Oct 1;37(4):1250-9. doi: 10.1016/j.neuroimage.2007.06.017. Epub 2007 Jul 3. Neuroimage. 2007. PMID: 17686634 - fMRI pattern classification using neuroanatomically constrained boosting.
Martínez-Ramón M, Koltchinskii V, Heileman GL, Posse S. Martínez-Ramón M, et al. Neuroimage. 2006 Jul 1;31(3):1129-41. doi: 10.1016/j.neuroimage.2006.01.022. Epub 2006 Mar 9. Neuroimage. 2006. PMID: 16529955 - Independent vector analysis (IVA): multivariate approach for fMRI group study.
Lee JH, Lee TW, Jolesz FA, Yoo SS. Lee JH, et al. Neuroimage. 2008 Mar 1;40(1):86-109. doi: 10.1016/j.neuroimage.2007.11.019. Epub 2007 Nov 28. Neuroimage. 2008. PMID: 18165105
Cited by
- Functional PET/MRI reveals active inhibition of neuronal activity during optogenetic activation of the nigrostriatal pathway.
Haas S, Bravo F, Ionescu TM, Gonzalez-Menendez I, Quintanilla-Martinez L, Dunkel G, Kuebler L, Hahn A, Lanzenberger R, Weigelin B, Reischl G, Pichler BJ, Herfert K. Haas S, et al. Sci Adv. 2024 Oct 25;10(43):eadn2776. doi: 10.1126/sciadv.adn2776. Epub 2024 Oct 25. Sci Adv. 2024. PMID: 39454014 Free PMC article. - Evaluating the effect of denoising submillimeter auditory fMRI data with NORDIC.
Faes LK, Lage-Castellanos A, Valente G, Yu Z, Cloos MA, Vizioli L, Moeller S, Yacoub E, De Martino F. Faes LK, et al. bioRxiv [Preprint]. 2024 Jan 25:2024.01.24.577070. doi: 10.1101/2024.01.24.577070. bioRxiv. 2024. PMID: 38328173 Free PMC article. Preprint. - Aortic valve Replacement compared to Transcatheter Implant and its relationship with COgnitive Impairment (ARTICO) evaluated with neuropsychological and advanced neuroimaging: a longitudinal cohort study.
Gomis M, Fernández C, Dacosta-Aguayo R, Carrillo X, Martínez S, Guijosa CM, Berastegui E, Valentín AG, Puig J, Bernal E, Ramos A, Cáceres C. Gomis M, et al. BMC Neurol. 2023 Aug 23;23(1):310. doi: 10.1186/s12883-023-03362-9. BMC Neurol. 2023. PMID: 37612651 Free PMC article. - Detection of autism spectrum disorder using graph representation learning algorithms and deep neural network, based on fMRI signals.
Yousefian A, Shayegh F, Maleki Z. Yousefian A, et al. Front Syst Neurosci. 2023 Feb 2;16:904770. doi: 10.3389/fnsys.2022.904770. eCollection 2022. Front Syst Neurosci. 2023. PMID: 36817947 Free PMC article. - Beyond massive univariate tests: Covariance regression reveals complex patterns of functional connectivity related to attention-deficit/hyperactivity disorder, age, sex, and response control.
Zhao Y, Nebel MB, Caffo BS, Mostofsky SH, Rosch KS. Zhao Y, et al. Biol Psychiatry Glob Open Sci. 2022 Jan;2(1):8-16. doi: 10.1016/j.bpsgos.2021.06.003. Epub 2021 Jun 19. Biol Psychiatry Glob Open Sci. 2022. PMID: 35528865 Free PMC article.
MeSH terms
LinkOut - more resources
Full Text Sources
Medical