Mutation analysis of 24 known cancer genes in the NCI-60 cell line set - PubMed (original) (raw)
. 2006 Nov;5(11):2606-12.
doi: 10.1158/1535-7163.MCT-06-0433. Epub 2006 Nov 6.
Helen Davies, Graham Bignell, Sarah Edkins, Claire Stevens, Sarah O'Meara, Thomas Santarius, Tim Avis, Syd Barthorpe, Lisa Brackenbury, Gemma Buck, Adam Butler, Jody Clements, Jennifer Cole, Ed Dicks, Simon Forbes, Kristian Gray, Kelly Halliday, Rachel Harrison, Katy Hills, Jonathan Hinton, Chris Hunter, Andy Jenkinson, David Jones, Vivienne Kosmidou, Richard Lugg, Andrew Menzies, Tatiana Mironenko, Adrian Parker, Janet Perry, Keiran Raine, David Richardson, Rebecca Shepherd, Alex Small, Raffaella Smith, Helen Solomon, Philip Stephens, Jon Teague, Calli Tofts, Jennifer Varian, Tony Webb, Sofie West, Sara Widaa, Andy Yates, William Reinhold, John N Weinstein, Michael R Stratton, P Andrew Futreal, Richard Wooster
Affiliations
- PMID: 17088437
- PMCID: PMC2705832
- DOI: 10.1158/1535-7163.MCT-06-0433
Mutation analysis of 24 known cancer genes in the NCI-60 cell line set
Ogechi N Ikediobi et al. Mol Cancer Ther. 2006 Nov.
Abstract
The panel of 60 human cancer cell lines (the NCI-60) assembled by the National Cancer Institute for anticancer drug discovery is a widely used resource. The NCI-60 has been characterized pharmacologically and at the molecular level more extensively than any other set of cell lines. However, no systematic mutation analysis of genes causally implicated in oncogenesis has been reported. This study reports the sequence analysis of 24 known cancer genes in the NCI-60 and an assessment of 4 of the 24 genes for homozygous deletions. One hundred thirty-seven oncogenic mutations were identified in 14 (APC, BRAF, CDKN2, CTNNB1, HRAS, KRAS, NRAS, SMAD4, PIK3CA, PTEN, RB1, STK11, TP53, and VHL) of the 24 genes. All lines have at least one mutation among the cancer genes examined, with most lines (73%) having more than one. Identification of those cancer genes mutated in the NCI-60, in combination with pharmacologic and molecular profiles of the cells, will allow for more informed interpretation of anticancer agent screening and will enhance the use of the NCI-60 cell lines for molecularly targeted screens.
Similar articles
- In vitro differential sensitivity of melanomas to phenothiazines is based on the presence of codon 600 BRAF mutation.
Ikediobi ON, Reimers M, Durinck S, Blower PE, Futreal AP, Stratton MR, Weinstein JN. Ikediobi ON, et al. Mol Cancer Ther. 2008 Jun;7(6):1337-46. doi: 10.1158/1535-7163.MCT-07-2308. Epub 2008 Jun 4. Mol Cancer Ther. 2008. PMID: 18524847 Free PMC article. - Correlation of PIK3Ca mutations with gene expression and drug sensitivity in NCI-60 cell lines.
Whyte DB, Holbeck SL. Whyte DB, et al. Biochem Biophys Res Commun. 2006 Feb 10;340(2):469-75. doi: 10.1016/j.bbrc.2005.12.025. Epub 2005 Dec 15. Biochem Biophys Res Commun. 2006. PMID: 16376301 - Genetic alteration of the beta-catenin gene (CTNNB1) in human lung cancer and malignant mesothelioma and identification of a new 3p21.3 homozygous deletion.
Shigemitsu K, Sekido Y, Usami N, Mori S, Sato M, Horio Y, Hasegawa Y, Bader SA, Gazdar AF, Minna JD, Hida T, Yoshioka H, Imaizumi M, Ueda Y, Takahashi M, Shimokata K. Shigemitsu K, et al. Oncogene. 2001 Jul 12;20(31):4249-57. doi: 10.1038/sj.onc.1204557. Oncogene. 2001. PMID: 11464291 - Mutational screening of RET, HRAS, KRAS, NRAS, BRAF, AKT1, and CTNNB1 in medullary thyroid carcinoma.
Schulten HJ, Al-Maghrabi J, Al-Ghamdi K, Salama S, Al-Muhayawi S, Chaudhary A, Hamour O, Abuzenadah A, Gari M, Al-Qahtani M. Schulten HJ, et al. Anticancer Res. 2011 Dec;31(12):4179-83. Anticancer Res. 2011. PMID: 22199277 - The predictive value of KRAS, NRAS, BRAF, PIK3CA and PTEN for anti-EGFR treatment in metastatic colorectal cancer: A systematic review and meta-analysis.
Therkildsen C, Bergmann TK, Henrichsen-Schnack T, Ladelund S, Nilbert M. Therkildsen C, et al. Acta Oncol. 2014 Jul;53(7):852-64. doi: 10.3109/0284186X.2014.895036. Epub 2014 Mar 25. Acta Oncol. 2014. PMID: 24666267 Review.
Cited by
- Development of a Drug-Response Modeling Framework to Identify Cell Line Derived Translational Biomarkers That Can Predict Treatment Outcome to Erlotinib or Sorafenib.
Li B, Shin H, Gulbekyan G, Pustovalova O, Nikolsky Y, Hope A, Bessarabova M, Schu M, Kolpakova-Hart E, Merberg D, Dorner A, Trepicchio WL. Li B, et al. PLoS One. 2015 Jun 24;10(6):e0130700. doi: 10.1371/journal.pone.0130700. eCollection 2015. PLoS One. 2015. PMID: 26107615 Free PMC article. - Targeting Microtubule-Associated Protein Tau in Chemotherapy-Resistant Models of High-Grade Serous Ovarian Carcinoma.
Barbolina MV. Barbolina MV. Cancers (Basel). 2022 Sep 19;14(18):4535. doi: 10.3390/cancers14184535. Cancers (Basel). 2022. PMID: 36139693 Free PMC article. - Human Oncoprotein MDM2 Up-regulates Expression of NF-κB2 Precursor p100 Conferring a Survival Advantage to Lung Cells.
Vaughan C, Mohanraj L, Singh S, Dumur CI, Ramamoorthy M, Garrett CT, Windle B, Yeudall WA, Deb S, Deb SP. Vaughan C, et al. Genes Cancer. 2011 Oct;2(10):943-55. doi: 10.1177/1947601911436008. Genes Cancer. 2011. PMID: 22701761 Free PMC article. - Detection of senescence using machine learning algorithms based on nuclear features.
Duran I, Pombo J, Sun B, Gallage S, Kudo H, McHugh D, Bousset L, Barragan Avila JE, Forlano R, Manousou P, Heikenwalder M, Withers DJ, Vernia S, Goldin RD, Gil J. Duran I, et al. Nat Commun. 2024 Feb 3;15(1):1041. doi: 10.1038/s41467-024-45421-w. Nat Commun. 2024. PMID: 38310113 Free PMC article. - The histone deacetylase inhibitor panobinostat demonstrates marked synergy with conventional chemotherapeutic agents in human ovarian cancer cell lines.
Budman DR, Tai J, Calabro A, John V. Budman DR, et al. Invest New Drugs. 2011 Dec;29(6):1224-9. doi: 10.1007/s10637-010-9467-6. Epub 2010 Jun 9. Invest New Drugs. 2011. PMID: 20533074
References
- Monks A, Scudiero D, Skehan P, et al. Feasibility of a high-flux anticancer drug screen usinga diverse panel of cultured human tumor cell lines. J Natl Cancer Inst. 1991;83:757–66. - PubMed
- Monks A, Scudiero D, Johnson G, Paull K, Sausville E. The NCI anticancer drug screen: a smart screen to identify effectors of novel targets. Anticancer Drug Des. 1997;12:533–41. - PubMed
- Holbeck SL. Update on NCI in vitro drug screen utilities. Eur J Cancer. 2004;40:785–93. - PubMed
- Paull K, Shoemaker R, Hodes L, et al. Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of mean graph and COMPARE algorithm. J Natl Cancer Inst. 1989;81:1088–92. - PubMed
- Weinstein JN, Kohn KW, Grever MR, et al. Neural computing in cancer drug development: predicting mechanism of action. Science. 1992;258:447–51. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous