Harnessing the hypoxia-inducible factor in cancer and ischemic disease - PubMed (original) (raw)
Review
. 2007 Feb 1;73(3):450-7.
doi: 10.1016/j.bcp.2006.10.013. Epub 2006 Oct 20.
Affiliations
- PMID: 17101119
- DOI: 10.1016/j.bcp.2006.10.013
Review
Harnessing the hypoxia-inducible factor in cancer and ischemic disease
M Christiane Brahimi-Horn et al. Biochem Pharmacol. 2007.
Abstract
The alpha/beta-heterodimeric transcription factor hypoxia-inducible factor (HIF) functions when the oxygen level in tissues is low, i.e. when the tissue microenvironment becomes hypoxic, and is non-functional when the level of oxygen is high. Certain pathophysiological conditions such as ischemic disorders and cancer encounter low levels of local tissue oxygenation due to a defective or insufficient vasculature. Highly proliferating tumour cells rapidly form into a mass that becomes located too far from the vasculature to be nourished and oxygenated. Under such conditions HIF activates or represses a vast array of genes that in particular, initiate the formation of new blood vessels and modify metabolism. In this way the tumour mass re-establishes conditions favourable for further proliferation. Interest is being expressed in the direct repression or stimulation of HIF activity, respectively, in the treatment of cancer and of ischemic disorders. The modulation of other HIF-target genes implicated, in particular, in tumour metabolism and intracellular pH control may also prove to be useful in cancer therapy. However, before going further a better understanding of the basics of the HIF signalling pathway is essential. This review will introduce the reader to the molecular mechanisms that regulate HIF and some of the biological consequences of its action, in particular in tumour metabolism, growth and invasion. Approaches to either enforce tumour regression or increase blood vessel formation through the targeting of HIF or its downstream effectors will also be discussed.
Similar articles
- The role of the hypoxia-inducible factor in tumor metabolism growth and invasion.
Brahimi-Horn C, Pouysségur J. Brahimi-Horn C, et al. Bull Cancer. 2006 Aug;93(8):E73-80. Bull Cancer. 2006. PMID: 16935775 Review. - HIF at the crossroads between ischemia and carcinogenesis.
Paul SA, Simons JW, Mabjeesh NJ. Paul SA, et al. J Cell Physiol. 2004 Jul;200(1):20-30. doi: 10.1002/jcp.10479. J Cell Physiol. 2004. PMID: 15137054 Review. - Cellular redox status regulates hypoxia inducible factor-1 activity. Role in tumour development.
Martínez-Sánchez G, Giuliani A. Martínez-Sánchez G, et al. J Exp Clin Cancer Res. 2007 Mar;26(1):39-50. J Exp Clin Cancer Res. 2007. PMID: 17550131 Review. - Role of hypoxia-inducible factor-1alpha as a cancer therapy target.
Patiar S, Harris AL. Patiar S, et al. Endocr Relat Cancer. 2006 Dec;13 Suppl 1:S61-75. doi: 10.1677/erc.1.01290. Endocr Relat Cancer. 2006. PMID: 17259560 Review. - Hypoxia signalling in cancer and approaches to enforce tumour regression.
Pouysségur J, Dayan F, Mazure NM. Pouysségur J, et al. Nature. 2006 May 25;441(7092):437-43. doi: 10.1038/nature04871. Nature. 2006. PMID: 16724055 Review.
Cited by
- Hypoxia-induced brain cell damage in male albino wistar rat.
Niu X, Li S, Zheng S, Xiong H, Lv J, Zhang H, Liu H. Niu X, et al. Saudi J Biol Sci. 2018 Nov;25(7):1473-1477. doi: 10.1016/j.sjbs.2017.03.018. Epub 2017 Apr 1. Saudi J Biol Sci. 2018. PMID: 30505197 Free PMC article. - A transient ischemic environment induces reversible compaction of chromatin.
Kirmes I, Szczurek A, Prakash K, Charapitsa I, Heiser C, Musheev M, Schock F, Fornalczyk K, Ma D, Birk U, Cremer C, Reid G. Kirmes I, et al. Genome Biol. 2015 Nov 5;16:246. doi: 10.1186/s13059-015-0802-2. Genome Biol. 2015. PMID: 26541514 Free PMC article. - Expression of hypoxia-inducible factor-1α and vascular density in mammary adenomas and adenocarcinomas in bitches.
Madej JA, Madej JP, Dziegiel P, Pula B, Nowak M. Madej JA, et al. Acta Vet Scand. 2013 Oct 24;55(1):73. doi: 10.1186/1751-0147-55-73. Acta Vet Scand. 2013. PMID: 24153191 Free PMC article. - HIF prolyl hydroxylase-3 mediates alpha-ketoglutarate-induced apoptosis and tumor suppression.
Tennant DA, Gottlieb E. Tennant DA, et al. J Mol Med (Berl). 2010 Aug;88(8):839-49. doi: 10.1007/s00109-010-0627-0. Epub 2010 Apr 11. J Mol Med (Berl). 2010. PMID: 20383689 - SMAD family member 3 (SMAD3) and SMAD4 repress HIF2α-dependent iron-regulatory genes.
Ma X, Das NK, Castillo C, Gourani A, Perekatt AO, Verzi MP, Shah YM. Ma X, et al. J Biol Chem. 2019 Mar 15;294(11):3974-3986. doi: 10.1074/jbc.RA118.005549. Epub 2019 Jan 18. J Biol Chem. 2019. PMID: 30659096 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources