The liver X receptor (LXR) and hepatic lipogenesis. The carbohydrate-response element-binding protein is a target gene of LXR - PubMed (original) (raw)
. 2007 Jan 5;282(1):743-51.
doi: 10.1074/jbc.M605023200. Epub 2006 Nov 14.
Affiliations
- PMID: 17107947
- DOI: 10.1074/jbc.M605023200
Free article
The liver X receptor (LXR) and hepatic lipogenesis. The carbohydrate-response element-binding protein is a target gene of LXR
Ji-Young Cha et al. J Biol Chem. 2007.
Free article
Abstract
The liver X receptors, LXRalpha (NR1H3) and LXRbeta (NR1H2), are ligand-activated transcription factors that belong to the nuclear hormone receptor superfamily. LXRs play a critical role in cholesterol homeostasis and bile acid metabolism. In addition, oral administration of LXR agonists to mice results in elevated hepatic fatty acid synthesis and steatosis and increased secretion of triglyceride-rich very low density lipoprotein resulting in hypertriglyceridemia. This increased hepatic lipogenesis has been largely attributed to the LXR-dependent up-regulation of sterol regulatory element-binding protein 1c (SREBP-1c) expression. However, it has been reported that treating Srebp-1c null mice with the synthetic LXR agonist T0901317 still results in enhanced expression of many lipogenic genes, suggesting additional mechanisms by which LXR can enhance hepatic lipogenesis. In this report, we identify the carbohydrate response element-binding protein (ChREBP) as an LXR target that independently enhances the up-regulation of select lipogenic genes. The ChREBP promoter contains functional LXR-binding sites that confer receptor-dependent binding and transactivation. We show that T0901317 treatment of mice is associated with up-regulation of the ChREBP target gene, liver-type pyruvate kinase. Therefore, activation of LXR not only increases ChREBP mRNA via enhanced transcription but also modulates ChREBP activity. This establishes LXR as a master lipogenic transcription factor, as it directly regulates both SREBP-1c and ChREBP to enhance hepatic fatty acid synthesis.
Similar articles
- Cross-talk between peroxisome proliferator-activated receptor (PPAR) alpha and liver X receptor (LXR) in nutritional regulation of fatty acid metabolism. I. PPARs suppress sterol regulatory element binding protein-1c promoter through inhibition of LXR signaling.
Yoshikawa T, Ide T, Shimano H, Yahagi N, Amemiya-Kudo M, Matsuzaka T, Yatoh S, Kitamine T, Okazaki H, Tamura Y, Sekiya M, Takahashi A, Hasty AH, Sato R, Sone H, Osuga J, Ishibashi S, Yamada N. Yoshikawa T, et al. Mol Endocrinol. 2003 Jul;17(7):1240-54. doi: 10.1210/me.2002-0190. Epub 2003 May 1. Mol Endocrinol. 2003. PMID: 12730331 - Liver X receptor regulates hepatic nuclear O-GlcNAc signaling and carbohydrate responsive element-binding protein activity.
Bindesbøll C, Fan Q, Nørgaard RC, MacPherson L, Ruan HB, Wu J, Pedersen TÅ, Steffensen KR, Yang X, Matthews J, Mandrup S, Nebb HI, Grønning-Wang LM. Bindesbøll C, et al. J Lipid Res. 2015 Apr;56(4):771-85. doi: 10.1194/jlr.M049130. Epub 2015 Feb 27. J Lipid Res. 2015. PMID: 25724563 Free PMC article. - Thyroid hormone-responsive SPOT 14 homolog promotes hepatic lipogenesis, and its expression is regulated by liver X receptor α through a sterol regulatory element-binding protein 1c-dependent mechanism in mice.
Wu J, Wang C, Li S, Li S, Wang W, Li J, Chi Y, Yang H, Kong X, Zhou Y, Dong C, Wang F, Xu G, Yang J, Gustafsson JÅ, Guan Y. Wu J, et al. Hepatology. 2013 Aug;58(2):617-28. doi: 10.1002/hep.26272. Epub 2013 Jul 2. Hepatology. 2013. PMID: 23348573 - Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c.
Ferré P, Foufelle F. Ferré P, et al. Diabetes Obes Metab. 2010 Oct;12 Suppl 2:83-92. doi: 10.1111/j.1463-1326.2010.01275.x. Diabetes Obes Metab. 2010. PMID: 21029304 Review. - ChREBP: a glucose-activated transcription factor involved in the development of metabolic syndrome.
Iizuka K, Horikawa Y. Iizuka K, et al. Endocr J. 2008 Aug;55(4):617-24. doi: 10.1507/endocrj.k07e-110. Epub 2008 May 19. Endocr J. 2008. PMID: 18490833 Review.
Cited by
- MicroRNA modulation of lipid metabolism and oxidative stress in cardiometabolic diseases.
Aranda JF, Madrigal-Matute J, Rotllan N, Fernández-Hernando C. Aranda JF, et al. Free Radic Biol Med. 2013 Sep;64:31-9. doi: 10.1016/j.freeradbiomed.2013.07.014. Epub 2013 Jul 17. Free Radic Biol Med. 2013. PMID: 23871755 Free PMC article. Review. - Regular exercise potentiates energetically expensive hepatic de novo lipogenesis during early weight regain.
Presby DM, Checkley LA, Jackman MR, Higgins JA, Jones KL, Giles ED, Houck JA, Webb PG, Steig AJ, Johnson GC, Rudolph MC, MacLean PS. Presby DM, et al. Am J Physiol Regul Integr Comp Physiol. 2019 Nov 1;317(5):R684-R695. doi: 10.1152/ajpregu.00074.2019. Epub 2019 Sep 25. Am J Physiol Regul Integr Comp Physiol. 2019. PMID: 31553623 Free PMC article. - Eyeballing cholesterol efflux and macrophage function in disease pathogenesis.
Sene A, Apte RS. Sene A, et al. Trends Endocrinol Metab. 2014 Mar;25(3):107-14. doi: 10.1016/j.tem.2013.10.007. Epub 2013 Nov 17. Trends Endocrinol Metab. 2014. PMID: 24252662 Free PMC article. Review. - Lipogenesis inhibitors: therapeutic opportunities and challenges.
Batchuluun B, Pinkosky SL, Steinberg GR. Batchuluun B, et al. Nat Rev Drug Discov. 2022 Apr;21(4):283-305. doi: 10.1038/s41573-021-00367-2. Epub 2022 Jan 14. Nat Rev Drug Discov. 2022. PMID: 35031766 Free PMC article. Review. - 25-Hydroxycholesterol-3-sulfate regulates macrophage lipid metabolism via the LXR/SREBP-1 signaling pathway.
Ma Y, Xu L, Rodriguez-Agudo D, Li X, Heuman DM, Hylemon PB, Pandak WM, Ren S. Ma Y, et al. Am J Physiol Endocrinol Metab. 2008 Dec;295(6):E1369-79. doi: 10.1152/ajpendo.90555.2008. Epub 2008 Oct 14. Am J Physiol Endocrinol Metab. 2008. PMID: 18854425 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases