A NAC Gene regulating senescence improves grain protein, zinc, and iron content in wheat - PubMed (original) (raw)
A NAC Gene regulating senescence improves grain protein, zinc, and iron content in wheat
Cristobal Uauy et al. Science. 2006.
Abstract
Enhancing the nutritional value of food crops is a means of improving human nutrition and health. We report here the positional cloning of Gpc-B1, a wheat quantitative trait locus associated with increased grain protein, zinc, and iron content. The ancestral wild wheat allele encodes a NAC transcription factor (NAM-B1) that accelerates senescence and increases nutrient remobilization from leaves to developing grains, whereas modern wheat varieties carry a nonfunctional NAM-B1 allele. Reduction in RNA levels of the multiple NAM homologs by RNA interference delayed senescence by more than 3 weeks and reduced wheat grain protein, zinc, and iron content by more than 30%.
Figures
Fig. 1
Map-based cloning of Gpc-B1. (A) QTL for grain protein on wheat chromosome arm 6BS (11). (B) Sequenced B-genome physical contig. The position and orientation of five genes is indicated by arrows. (C) Fine mapping of Gpc-B1. The x’s indicate the positions of critical recombination events flanking Gpc-B1. Vertical lines represent polymorphism mapped in the critical lines. A single gene with three exons (green rectangles) was annotated within the 7.4 kb region flanked by the closest recombination events. The open arrowhead indicates the transcription initiation site. (D) Graphical genotypes of critical recombinant substitution lines used for fine-mapping of Gpc-B1. Blue bars represent LDN markers; red bars represent DIC markers. (E) Flag leaf chlorophyll content of recombinant substitution lines segregating for Gpc-B1 (14). Asterisks indicate significant differences (P<0.01). Phenotypes of critical recombinant substitution lines: (F) chlorophyll at 20 days after anthesis (DAA), (G) grain protein, (H) Zn, and (I) Fe concentrations. Blue and red bars indicate the presence of the LDN and DIC alleles at TtNAM-B1, respectively. (J) First 18 nucleotides of DIC and LDN TtNAM-B1 alleles and their corresponding amino acid translation. The LDN allele carries a 1-bp insertion (red T) that disrupts the reading frame (indicated by red amino acid residues). Error bars represent standard error of the means (E–I).
Fig. 2
(A) Expression profile of the different TtNAM genes relative to ACTIN in tetraploid wheat recombinant substitution line 300 carrying a functional TtNAM-B1 gene. Units are values linearized with the 2(−Δ ΔCT) method, where CT is the threshold cycle. (B) Relative transcript level of endogenous TaNAM genes in T2 plants (L19-54) segregating for transgenic (n = 12, white) and non-transgenic (n = 11, black) TaNAM RNAi constructs at 4 and (C) 9 days after anthesis. Asterisks indicate significant differences (P<0.05). (D) Flag leaf chlorophyll content profile of transgenic (n = 22 T1 plants) and non-transgenic controls (n = 10 T1 plants). (E) Representative transgenic (left) and non-transgenic (right) plants 50 DAA. (F) Main spike and peduncles of representative transgenic and non-transgenic plants 50 DAA. Error bars represent standard error of the means.
Comment in
- Plant science. Distributing nutrition.
Gitlin JD. Gitlin JD. Science. 2006 Nov 24;314(5803):1252-3. doi: 10.1126/science.1136251. Science. 2006. PMID: 17124312 No abstract available.
Similar articles
- Functional characterization of GPC-1 genes in hexaploid wheat.
Avni R, Zhao R, Pearce S, Jun Y, Uauy C, Tabbita F, Fahima T, Slade A, Dubcovsky J, Distelfeld A. Avni R, et al. Planta. 2014 Feb;239(2):313-324. doi: 10.1007/s00425-013-1977-y. Epub 2013 Oct 30. Planta. 2014. PMID: 24170335 Free PMC article. - Haynaldia villosa NAM-V1 is linked with the powdery mildew resistance gene Pm21 and contributes to increasing grain protein content in wheat.
Zhao C, Lv X, Li Y, Li F, Geng M, Mi Y, Ni Z, Wang X, Xie C, Sun Q. Zhao C, et al. BMC Genet. 2016 Jun 14;17(1):82. doi: 10.1186/s12863-016-0391-4. BMC Genet. 2016. PMID: 27301696 Free PMC article. - Wheat NAM genes regulate the majority of early monocarpic senescence transcriptional changes including nitrogen remobilization genes.
Andleeb T, Knight E, Borrill P. Andleeb T, et al. G3 (Bethesda). 2023 Feb 9;13(2):jkac275. doi: 10.1093/g3journal/jkac275. G3 (Bethesda). 2023. PMID: 36226803 Free PMC article. - Senescence, nutrient remobilization, and yield in wheat and barley.
Distelfeld A, Avni R, Fischer AM. Distelfeld A, et al. J Exp Bot. 2014 Jul;65(14):3783-98. doi: 10.1093/jxb/ert477. Epub 2014 Jan 27. J Exp Bot. 2014. PMID: 24470467 Review. - NAC Transcription Factors in Senescence: From Molecular Structure to Function in Crops.
Podzimska-Sroka D, O'Shea C, Gregersen PL, Skriver K. Podzimska-Sroka D, et al. Plants (Basel). 2015 Jul 13;4(3):412-48. doi: 10.3390/plants4030412. Plants (Basel). 2015. PMID: 27135336 Free PMC article. Review.
Cited by
- Integrative Analysis of Transcriptome and Metabolome Reveals the Pivotal Role of the NAM Family Genes in Oncidium hybridum Lodd. Pseudobulb Growth.
Liu Y, Zhu Q, Wang Z, Zheng H, Zheng X, Ling P, Tang M. Liu Y, et al. Int J Mol Sci. 2024 Sep 26;25(19):10355. doi: 10.3390/ijms251910355. Int J Mol Sci. 2024. PMID: 39408686 Free PMC article. - Genetic dissection of value-added quality traits and agronomic parameters through genome-wide association mapping in bread wheat (T. aestivum L.).
Vishwakarma MK, Bhati PK, Kumar U, Singh RP, Kumar S, Govindan V, Mavi GS, Thiyagarajan K, Dhar N, Joshi AK. Vishwakarma MK, et al. Front Plant Sci. 2024 Aug 20;15:1419227. doi: 10.3389/fpls.2024.1419227. eCollection 2024. Front Plant Sci. 2024. PMID: 39228836 Free PMC article. - Two dwarfing genes Rht-B1b and Rht-D1b show pleiotropic effects on grain protein content in bread wheat (Triticum aestivum L.).
Hu W, Wu D, Li D, Cheng X, Wang Z, Zhao D, Jia J. Hu W, et al. Theor Appl Genet. 2024 Aug 14;137(9):204. doi: 10.1007/s00122-024-04713-x. Theor Appl Genet. 2024. PMID: 39141110 - QTL Mapping of Yield, Agronomic, and Nitrogen-Related Traits in Barley (Hordeum vulgare L.) under Low Nitrogen and Normal Nitrogen Treatments.
Chen B, Hou Y, Huo Y, Zeng Z, Hu D, Mao X, Zhong C, Xu Y, Tang X, Gao X, Ma J, Chen G. Chen B, et al. Plants (Basel). 2024 Aug 1;13(15):2137. doi: 10.3390/plants13152137. Plants (Basel). 2024. PMID: 39124255 Free PMC article. - Nitrogen deficiency tolerance conferred by introgression of a QTL derived from wild emmer into bread wheat.
Govta N, Fatiukha A, Govta L, Pozniak C, Distelfeld A, Fahima T, Beckles DM, Krugman T. Govta N, et al. Theor Appl Genet. 2024 Jul 17;137(8):187. doi: 10.1007/s00122-024-04692-z. Theor Appl Genet. 2024. PMID: 39020219 Free PMC article.
References
- World Health Organization. Meeting of interested parties: Nutrition. 2001 http://www.who.int/mipfiles/2299/MIP_01_APR_SDE_3.en.pdf.
- Welch RM, Graham RD. J Exp Bot. 2004;55:353. - PubMed
- UN Food and Agriculture Organization. Food Outlook. 2005;4 http://www.fao.org/documents.
- Simmonds N. J Sci Food Agric. 1995;67:309.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical