Signature-tagged mutagenesis: barcoding mutants for genome-wide screens - PubMed (original) (raw)
Review
doi: 10.1038/nrg1984.
Affiliations
- PMID: 17139324
- DOI: 10.1038/nrg1984
Review
Signature-tagged mutagenesis: barcoding mutants for genome-wide screens
Piotr Mazurkiewicz et al. Nat Rev Genet. 2006 Dec.
Abstract
DNA signature tags (molecular barcodes) facilitate functional screens by identifying mutants in mixed populations that have a reduced or increased adaptation to a particular environment. Many innovative adaptations and refinements in the technology have been described since its original use with Salmonella; they have yielded a wealth of information on a broad range of biological processes--mainly in bacteria, but also in yeast and other fungi, viruses, parasites and, most recently, in mammalian cells. By combining whole-genome microarrays and comprehensive ordered libraries of mutants, high-throughput functional screens can now be achieved on a genomic scale.
Similar articles
- Genome-Wide Mutagenesis in Borrelia burgdorferi.
Lin T, Gao L. Lin T, et al. Methods Mol Biol. 2018;1690:201-223. doi: 10.1007/978-1-4939-7383-5_16. Methods Mol Biol. 2018. PMID: 29032547 - Generation and analysis of a barcode-tagged insertion mutant library in the fission yeast Schizosaccharomyces pombe.
Chen BR, Hale DC, Ciolek PJ, Runge KW. Chen BR, et al. BMC Genomics. 2012 May 3;13:161. doi: 10.1186/1471-2164-13-161. BMC Genomics. 2012. PMID: 22554201 Free PMC article. - Signature-tagged mutagenesis to characterize genes through competitive selection of bar-coded genome libraries.
Oh J, Nislow C. Oh J, et al. Methods Mol Biol. 2011;765:225-52. doi: 10.1007/978-1-61779-197-0_14. Methods Mol Biol. 2011. PMID: 21815096 - Using genomic microarrays to study insertional/transposon mutant libraries.
Baldwin DN, Salama NR. Baldwin DN, et al. Methods Enzymol. 2007;421:90-110. doi: 10.1016/S0076-6879(06)21010-3. Methods Enzymol. 2007. PMID: 17352918 Review. - In vivo expression technology and signature-tagged mutagenesis screens for identifying mechanisms of survival of zoonotic foodborne pathogens.
Dudley EG. Dudley EG. Foodborne Pathog Dis. 2008 Aug;5(4):473-85. doi: 10.1089/fpd.2008.0104. Foodborne Pathog Dis. 2008. PMID: 18673072 Review.
Cited by
- High-throughput functional genomics: A (myco)bacterial perspective.
Winkler KR, Mizrahi V, Warner DF, De Wet TJ. Winkler KR, et al. Mol Microbiol. 2023 Aug;120(2):141-158. doi: 10.1111/mmi.15103. Epub 2023 Jun 6. Mol Microbiol. 2023. PMID: 37278255 Free PMC article. Review. - Mycobacterial Genetic Technologies for Probing the Host-Pathogen Microenvironment.
Adefisayo OO, Curtis ER, Smith CM. Adefisayo OO, et al. Infect Immun. 2023 Jun 15;91(6):e0043022. doi: 10.1128/iai.00430-22. Epub 2023 May 30. Infect Immun. 2023. PMID: 37249448 Free PMC article. Review. - The continuing evolution of barcode applications: Functional toxicology to cell lineage.
Fasullo M, Dolan M. Fasullo M, et al. Exp Biol Med (Maywood). 2022 Dec;247(23):2119-2127. doi: 10.1177/15353702221121600. Epub 2022 Sep 16. Exp Biol Med (Maywood). 2022. PMID: 36113119 Free PMC article. Review. - Paving the Way: Contributions of Big Data to Apicomplexan and Kinetoplastid Research.
Kent RS, Briggs EM, Colon BL, Alvarez C, Silva Pereira S, De Niz M. Kent RS, et al. Front Cell Infect Microbiol. 2022 Jun 6;12:900878. doi: 10.3389/fcimb.2022.900878. eCollection 2022. Front Cell Infect Microbiol. 2022. PMID: 35734575 Free PMC article. Review. - Advanced strategies for development of vaccines against human bacterial pathogens.
Sharma A, Sanduja P, Anand A, Mahajan P, Guzman CA, Yadav P, Awasthi A, Hanski E, Dua M, Johri AK. Sharma A, et al. World J Microbiol Biotechnol. 2021 Mar 22;37(4):67. doi: 10.1007/s11274-021-03021-6. World J Microbiol Biotechnol. 2021. PMID: 33748926 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources