Levels of linkage disequilibrium in a wild bird population - PubMed (original) (raw)
Levels of linkage disequilibrium in a wild bird population
Niclas Backström et al. Biol Lett. 2006.
Abstract
Population-based mapping approaches are attractive for tracing the genetic background to phenotypic traits in wild species, given that it is often difficult to gather extensive and well-defined pedigrees needed for quantitative trait locus analysis. However, the feasibility of association or hitch-hiking mapping is dependent on the degree of linkage disequilibrium (LD) in the population, on which there is yet limited information for wild species. Here we use single nucleotide polymorphism (SNP) markers from 23 genes in a recently established linkage map of the Z chromosome of the collared flycatcher, to study the extent of LD in a natural bird population. In most but not all cases we find SNPs within the same intron (less than 500 bp) to be in perfect LD. However, LD then decays to background level at a distance 1cM or 400-500 kb. Although LD seems more extensive than in other species, if the observed pattern is representative for other regions of the genome and turns out to be a general feature of natural bird populations, dense marker maps might be needed for genome scans aimed at identifying association between marker and trait loci.
Figures
Figure 1
Plot of pair wise measures of _D_′ (open squares) and _r_2 (solid dots) versus genetic distance along the collared flycatcher Z chromosome.
Figure 2
Fraction of _D_′ values exceeding 0.5 for the interval 0–20 cM.
Figure 3
_D_′ values for intergenic pairs of SNP markers located within a physical distance of 0–1000 kb in the chicken genome.
Similar articles
- Extensive linkage disequilibrium in a wild bird population.
Li MH, Merilä J. Li MH, et al. Heredity (Edinb). 2010 Jun;104(6):600-10. doi: 10.1038/hdy.2009.150. Epub 2009 Nov 4. Heredity (Edinb). 2010. PMID: 19888292 - Construction of a dense SNP map for bovine chromosome 6 to assist the assembly of the bovine genome sequence.
Nilsen H, Hayes B, Berg PR, Roseth A, Sundsaasen KK, Nilsen K, Lien S. Nilsen H, et al. Anim Genet. 2008 Apr;39(2):97-104. doi: 10.1111/j.1365-2052.2007.01686.x. Epub 2008 Feb 26. Anim Genet. 2008. PMID: 18307581 - Combined high resolution linkage and association mapping of quantitative trait loci.
Fan R, Xiong M. Fan R, et al. Eur J Hum Genet. 2003 Feb;11(2):125-37. doi: 10.1038/sj.ejhg.5200941. Eur J Hum Genet. 2003. PMID: 12634860 - On selecting markers for association studies: patterns of linkage disequilibrium between two and three diallelic loci.
Garner C, Slatkin M. Garner C, et al. Genet Epidemiol. 2003 Jan;24(1):57-67. doi: 10.1002/gepi.10217. Genet Epidemiol. 2003. PMID: 12508256 Review. - Linkage disequilibrium maps and disease-association mapping.
Maniatis N. Maniatis N. Methods Mol Biol. 2007;376:109-21. doi: 10.1007/978-1-59745-389-9_8. Methods Mol Biol. 2007. PMID: 17984541 Review.
Cited by
- An extensive candidate gene approach to speciation: diversity, divergence and linkage disequilibrium in candidate pigmentation genes across the European crow hybrid zone.
Poelstra JW, Ellegren H, Wolf JB. Poelstra JW, et al. Heredity (Edinb). 2013 Dec;111(6):467-73. doi: 10.1038/hdy.2013.68. Epub 2013 Jul 24. Heredity (Edinb). 2013. PMID: 23881172 Free PMC article. - Nucleotide variation, linkage disequilibrium and founder-facilitated speciation in wild populations of the zebra finch (Taeniopygia guttata).
Balakrishnan CN, Edwards SV. Balakrishnan CN, et al. Genetics. 2009 Feb;181(2):645-60. doi: 10.1534/genetics.108.094250. Epub 2008 Dec 1. Genetics. 2009. PMID: 19047416 Free PMC article. - Relationship between physical and genetic distances along the zebra finch Z chromosome.
Pigozzi MI. Pigozzi MI. Chromosome Res. 2008;16(6):839-49. doi: 10.1007/s10577-008-1243-5. Epub 2008 Aug 2. Chromosome Res. 2008. PMID: 18668333 - Linkage disequilibrium reveals different demographic history in egg laying chickens.
Qanbari S, Hansen M, Weigend S, Preisinger R, Simianer H. Qanbari S, et al. BMC Genet. 2010 Nov 15;11:103. doi: 10.1186/1471-2156-11-103. BMC Genet. 2010. PMID: 21078133 Free PMC article. - Migration-Selection Balance Drives Genetic Differentiation in Genes Associated with High-Altitude Function in the Speckled Teal (Anas flavirostris) in the Andes.
Graham AM, Lavretsky P, Muñoz-Fuentes V, Green AJ, Wilson RE, McCracken KG. Graham AM, et al. Genome Biol Evol. 2018 Jan 1;10(1):14-32. doi: 10.1093/gbe/evx253. Genome Biol Evol. 2018. PMID: 29211852 Free PMC article.
References
- Alatalo R.V, Eriksson D, Gustafsson L, Lundberg A. Hybridisation between pied and collared flycatchers—sexual selection and speciation theory. J. Evol. Biol. 1990;3:375–389. doi:10.1046/j.1420-9101.1990.3050375.x - DOI
- Barrett J.C, Fry B, Maller J, Daly M.J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–265. doi:10.1093/bioinformatics/bth457 - DOI - PubMed
- Borge T, Webster M.T, Andersson G, Saetre G.P. Contrasting patterns of polymorphism and divergence on the Z chromosome and autosomes in two Ficedula flycatcher species. Genetics. 2005;171:1861–1873. doi:10.1534/genetics.105.045120 - DOI - PMC - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Research Materials