The transition between transcriptional initiation and elongation in E. coli is highly variable and often rate limiting - PubMed (original) (raw)
The transition between transcriptional initiation and elongation in E. coli is highly variable and often rate limiting
Nikos B Reppas et al. Mol Cell. 2006.
Free article
Abstract
We perform a genome-wide analysis of the transition between transcriptional initiation and elongation in Escherichia coli by determining the association of core RNA polymerase (RNAP) and the promoter-recognition factor sigma70 with respect to RNA transcripts. We identify 1286 sigma70-associated promoters, including many internal to known operons, and demonstrate that sigma70 is usually released very rapidly from elongating RNAP complexes. On average, RNAP density is higher at the promoter than in the coding sequence, although the ratio is highly variable among different transcribed regions. Strikingly, a significant fraction of RNAP-bound promoters is not associated with transcriptional activity, perhaps due to an intrinsic energetic barrier to promoter escape. Thus, the transition from transcriptional initiation to elongation is highly variable, often rate limiting, and in some cases is essentially blocked such that RNAP is effectively "poised" to transcribe only under the appropriate environmental conditions. The genomic pattern of RNAP density in E. coli differs from that in yeast and mammalian cells.
Similar articles
- Association of RNA polymerase with transcribed regions in Escherichia coli.
Wade JT, Struhl K. Wade JT, et al. Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17777-82. doi: 10.1073/pnas.0404305101. Epub 2004 Dec 13. Proc Natl Acad Sci U S A. 2004. PMID: 15596728 Free PMC article. - Bacterial RNA polymerase can retain σ70 throughout transcription.
Harden TT, Wells CD, Friedman LJ, Landick R, Hochschild A, Kondev J, Gelles J. Harden TT, et al. Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):602-7. doi: 10.1073/pnas.1513899113. Epub 2016 Jan 5. Proc Natl Acad Sci U S A. 2016. PMID: 26733675 Free PMC article. - Density of σ70 promoter-like sites in the intergenic regions dictates the redistribution of RNA polymerase during osmotic stress in Escherichia coli.
Sun Z, Cagliero C, Izard J, Chen Y, Zhou YN, Heinz WF, Schneider TD, Jin DJ. Sun Z, et al. Nucleic Acids Res. 2019 May 7;47(8):3970-3985. doi: 10.1093/nar/gkz159. Nucleic Acids Res. 2019. PMID: 30843055 Free PMC article. - The molecular basis of selective promoter activation by the sigmaS subunit of RNA polymerase.
Typas A, Becker G, Hengge R. Typas A, et al. Mol Microbiol. 2007 Mar;63(5):1296-306. doi: 10.1111/j.1365-2958.2007.05601.x. Mol Microbiol. 2007. PMID: 17302812 Review. - Transcription factor dynamics.
Lewis PJ, Doherty GP, Clarke J. Lewis PJ, et al. Microbiology (Reading). 2008 Jul;154(Pt 7):1837-1844. doi: 10.1099/mic.0.2008/018549-0. Microbiology (Reading). 2008. PMID: 18599813 Review.
Cited by
- Backtracked and paused transcription initiation intermediate of Escherichia coli RNA polymerase.
Lerner E, Chung S, Allen BL, Wang S, Lee J, Lu SW, Grimaud LW, Ingargiola A, Michalet X, Alhadid Y, Borukhov S, Strick TR, Taatjes DJ, Weiss S. Lerner E, et al. Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):E6562-E6571. doi: 10.1073/pnas.1605038113. Epub 2016 Oct 11. Proc Natl Acad Sci U S A. 2016. PMID: 27729537 Free PMC article. - Insights into the Mechanisms of Basal Coordination of Transcription Using a Genome-Reduced Bacterium.
Junier I, Unal EB, Yus E, Lloréns-Rico V, Serrano L. Junier I, et al. Cell Syst. 2016 Jun 22;2(6):391-401. doi: 10.1016/j.cels.2016.04.015. Epub 2016 May 26. Cell Syst. 2016. PMID: 27237741 Free PMC article. - High-resolution transcriptome and genome-wide dynamics of RNA polymerase and NusA in Mycobacterium tuberculosis.
Uplekar S, Rougemont J, Cole ST, Sala C. Uplekar S, et al. Nucleic Acids Res. 2013 Jan;41(2):961-77. doi: 10.1093/nar/gks1260. Epub 2012 Dec 7. Nucleic Acids Res. 2013. PMID: 23222129 Free PMC article. - Poising of Escherichia coli RNA polymerase and its release from the sigma 38 C-terminal tail for osmY transcription.
Rosenthal AZ, Kim Y, Gralla JD. Rosenthal AZ, et al. J Mol Biol. 2008 Feb 29;376(4):938-49. doi: 10.1016/j.jmb.2007.12.037. Epub 2008 Jan 16. J Mol Biol. 2008. PMID: 18201723 Free PMC article. - Whole-genome maps of USF1 and USF2 binding and histone H3 acetylation reveal new aspects of promoter structure and candidate genes for common human disorders.
Rada-Iglesias A, Ameur A, Kapranov P, Enroth S, Komorowski J, Gingeras TR, Wadelius C. Rada-Iglesias A, et al. Genome Res. 2008 Mar;18(3):380-92. doi: 10.1101/gr.6880908. Epub 2008 Jan 29. Genome Res. 2008. PMID: 18230803 Free PMC article.