Dynamics of Asp23-Lys28 salt-bridge formation in Abeta10-35 monomers - PubMed (original) (raw)

. 2006 Dec 20;128(50):16159-68.

doi: 10.1021/ja064872y.

Affiliations

Dynamics of Asp23-Lys28 salt-bridge formation in Abeta10-35 monomers

Bogdan Tarus et al. J Am Chem Soc. 2006.

Abstract

In the amyloid fibrils formed from long fragments of the amyloid beta-protein (Abeta-protein), the monomers are arranged in parallel and lie perpendicular to the fibril axis. The structure of the monomers satisfies the amyloid self-organization principle; namely, the low free energy state of the monomer maximizes the number of intra- and interpeptide contacts and salt bridges. The formation of the intramolecular salt bridge between Asp(D)23 and Lys(K)28 ensures that unpaired charges are not buried in the low-dielectric interior. We have investigated, using all-atom molecular dynamics simulations in explicit water, whether the D23-K28 interaction forms spontaneously in the isolated Abeta10-35 monomer. To validate the simulation protocol, we show, using five independent trajectories spanning a total of 100 ns, that the pKa values of the titratable groups are in good agreement with experimental measurements. The computed free energy disconnectvity graph shows that broadly the ensemble of compact random coil conformations can be clustered into four basins that are separated by free energy barriers ranging from 0.3 to 2.7 kcal/mol. There is significant residual structure in the conformation of the peptide in each of the basins. Due to the desolvation penalty, the structural motif with a stable turn involving the residues VGSN and a preformed D23-K28 contact is a minor component of the simulated structures. The extent of solvation of the peptides in the four basins varies greatly, which underscores the dynamical fluctuations in the monomer. Our results suggest that the early event in the oligomerization process must be the expulsion of discrete water molecules that facilitates the formation of interpeptide-interaction-driven stable structures with an intramolecular D23-K28 salt bridge and an intact VGSN turn.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources