Do studies in caveolin-knockouts teach us about physiology and pharmacology or instead, the ways mice compensate for 'lost proteins'? - PubMed (original) (raw)
Comment
Do studies in caveolin-knockouts teach us about physiology and pharmacology or instead, the ways mice compensate for 'lost proteins'?
P A Insel et al. Br J Pharmacol. 2007 Feb.
Abstract
A wide array of phenotypic changes have been reported in mice with knockout of expression of caveolin-1. Neidhold et al. (2007) describe results in this issue that continue this trend by showing that saphenous arteries from adult caveolin-1 knockout mice lack caveolae, lose beta1-adrenoceptor-promoted relaxation, gain beta3-adrenoceptor-promoted relaxation but show no change in vasomotor response to beta2-adrenoceptor activation. Neither the physiological importance for wild-type animals nor the mechanistic basis for these changes is clear. Although the caveolin-1 knockout and wild-type mice express similar levels of the receptor mRNAs, the protein expression of the receptors is not specified and represents, in our view, an important limitation of the study. We also question the physiological relevance of the findings and ask: Do studies in total body/lifespan caveolin-knockout mice further understanding of physiology and pharmacology or do they primarily characterize secondary consequences? We propose that alternative approaches that decrease caveolin expression in a temporally and spatially discrete manner are more likely to facilitate definitive conclusions regarding caveolin-1 and its role in regulation of beta-adrenoceptors and other pharmacological targets.
Comment on
- The function of alpha- and beta-adrenoceptors of the saphenous artery in caveolin-1 knockout and wild-type mice.
Neidhold S, Eichhorn B, Kasper M, Ravens U, Kaumann AJ. Neidhold S, et al. Br J Pharmacol. 2007 Feb;150(3):261-70. doi: 10.1038/sj.bjp.0706980. Epub 2006 Dec 18. Br J Pharmacol. 2007. PMID: 17179950 Free PMC article.
Similar articles
- The function of alpha- and beta-adrenoceptors of the saphenous artery in caveolin-1 knockout and wild-type mice.
Neidhold S, Eichhorn B, Kasper M, Ravens U, Kaumann AJ. Neidhold S, et al. Br J Pharmacol. 2007 Feb;150(3):261-70. doi: 10.1038/sj.bjp.0706980. Epub 2006 Dec 18. Br J Pharmacol. 2007. PMID: 17179950 Free PMC article. - Role of G(i/o)-Src kinase-PI3K/Akt pathway and caveolin-1 in β₂-adrenoceptor coupling to endothelial NO synthase in mouse pulmonary artery.
Banquet S, Delannoy E, Agouni A, Dessy C, Lacomme S, Hubert F, Richard V, Muller B, Leblais V. Banquet S, et al. Cell Signal. 2011 Jul;23(7):1136-43. doi: 10.1016/j.cellsig.2011.02.008. Epub 2011 Mar 6. Cell Signal. 2011. PMID: 21385608 - Role of caveolin-1 in thyroid phenotype, cell homeostasis, and hormone synthesis: in vivo study of caveolin-1 knockout mice.
Senou M, Costa MJ, Massart C, Thimmesch M, Khalifa C, Poncin S, Boucquey M, Gérard AC, Audinot JN, Dessy C, Ruf J, Feron O, Devuyst O, Guiot Y, Dumont JE, Van Sande J, Many MC. Senou M, et al. Am J Physiol Endocrinol Metab. 2009 Aug;297(2):E438-51. doi: 10.1152/ajpendo.90784.2008. Epub 2009 May 12. Am J Physiol Endocrinol Metab. 2009. PMID: 19435853 - The role of caveolin-1 in cardiovascular regulation.
Rahman A, Swärd K. Rahman A, et al. Acta Physiol (Oxf). 2009 Feb;195(2):231-45. doi: 10.1111/j.1748-1716.2008.01907.x. Epub 2008 Sep 25. Acta Physiol (Oxf). 2009. PMID: 18826501 Review. - Caveolae and endothelial dysfunction: filling the caves in cardiovascular disease.
Xu Y, Buikema H, van Gilst WH, Henning RH. Xu Y, et al. Eur J Pharmacol. 2008 May 13;585(2-3):256-60. doi: 10.1016/j.ejphar.2008.02.086. Epub 2008 Mar 15. Eur J Pharmacol. 2008. PMID: 18423600 Review.
Cited by
- Differential regulation of muscarinic M2 and M3 receptor signaling in gastrointestinal smooth muscle by caveolin-1.
Bhattacharya S, Mahavadi S, Al-Shboul O, Rajagopal S, Grider JR, Murthy KS. Bhattacharya S, et al. Am J Physiol Cell Physiol. 2013 Aug 1;305(3):C334-47. doi: 10.1152/ajpcell.00334.2012. Epub 2013 Jun 19. Am J Physiol Cell Physiol. 2013. PMID: 23784544 Free PMC article. - Caveolin-1: an ambiguous partner in cell signalling and cancer.
Quest AF, Gutierrez-Pajares JL, Torres VA. Quest AF, et al. J Cell Mol Med. 2008 Aug;12(4):1130-50. doi: 10.1111/j.1582-4934.2008.00331.x. Epub 2008 Apr 8. J Cell Mol Med. 2008. PMID: 18400052 Free PMC article. Review. - Increased PDE5 activity and decreased Rho kinase and PKC activities in colonic muscle from caveolin-1-/- mice impair the peristaltic reflex and propulsion.
Mahavadi S, Bhattacharya S, Kumar DP, Clay C, Ross G, Akbarali HI, Grider JR, Murthy KS. Mahavadi S, et al. Am J Physiol Gastrointest Liver Physiol. 2013 Dec;305(12):G964-74. doi: 10.1152/ajpgi.00165.2013. Epub 2013 Oct 24. Am J Physiol Gastrointest Liver Physiol. 2013. PMID: 24157969 Free PMC article. - Caveolins as Regulators of Stress Adaptation.
Schilling JM, Head BP, Patel HH. Schilling JM, et al. Mol Pharmacol. 2018 Apr;93(4):277-285. doi: 10.1124/mol.117.111237. Epub 2018 Jan 22. Mol Pharmacol. 2018. PMID: 29358220 Free PMC article. Review. - Similar transcriptomic alterations in Cx43 knockdown and knockout astrocytes.
Iacobas DA, Iacobas S, Urban-Maldonado M, Scemes E, Spray DC. Iacobas DA, et al. Cell Commun Adhes. 2008 May;15(1):195-206. doi: 10.1080/15419060802014222. Cell Commun Adhes. 2008. PMID: 18649190 Free PMC article.
References
- Bergdahl A, Sward K. Caveolae-associated signaling in smooth muscle. Can J Physiol Pharmacol. 2004;82:289–299. - PubMed
- Bouras T, Lisanti MP, Pestell RG. Caveolin-1 in breast cancer. Cancer Biol Ther. 2004;3:931–941. - PubMed
- Cohen AW, Hnasko R, Schubert W, Lisanti MP. Role of caveolae and caveolins in health and disease. Physiol Rev. 2004;84:1341–1379. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources