Structure and assembly of the Escherichia coli transcription termination factor rho and its interaction with RNA. I. Cryoelectron microscopic studies - PubMed (original) (raw)

Structure and assembly of the Escherichia coli transcription termination factor rho and its interaction with RNA. I. Cryoelectron microscopic studies

E P Gogol et al. J Mol Biol. 1991.

Abstract

Cryoelectron microscopy has been used to visualize the Escherichia coli transcription termination protein rho in a vitreously frozen state, without the use of strains, fixatives or other chemical perturbants. In the absence of RNA cofactor, a variety of structures are observed, reflecting the heterogeneity of complexes formed by rho at protein concentrations near the physiological range (3 to 10 microM). One of the most common structural motifs we see is a six-membered ring of rho subunits (present as either a closed or "notched" circle), which corresponds to the predominant hexameric association state of the protein. Also visible are smaller oligomeric structures, present as curved lines of rho subunits, which probably represent the lower association states of the protein that coexist with the hexamer at these protein concentrations. Addition of oligomers of ribocytosine (rC) of defined lengths (23-mers and 100-mers) results in the generation of more homogeneous populations of rho oligomers. In the presence of (rC)23, all identifiable particles appear either as closed or as notched hexameric circles. A small fraction of these particles are of visibly higher density, and are identified with the dodecamers expected as a subpopulation of rho under these conditions. Binding of (rC)100, an oligomer of length greater than that needed to span the entire hexamer binding site, results in a uniform population of closed circular hexamers. In some images additional features are visible at either the centers or the peripheries of the particles. These features may correspond to the excess length of the rC strands bound to the hexamers. The distributions of particles observed under the various experimental conditions used correlate well to those deduced from physical biochemical studies Seifried et al., accompanying paper).

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources