Ribonuclease revisited: structural insights into ribonuclease III family enzymes - PubMed (original) (raw)
Review
Ribonuclease revisited: structural insights into ribonuclease III family enzymes
Ian J MacRae et al. Curr Opin Struct Biol. 2007 Feb.
Abstract
Ribonuclease III (RNase III) enzymes occur ubiquitously in biology and are responsible for processing RNA precursors into functional RNAs that participate in protein synthesis, RNA interference and a range of other cellular activities. Members of the RNase III enzyme family, including Escherichia coli RNase III, Rnt1, Dicer and Drosha, share the ability to recognize and cleave double-stranded RNA (dsRNA), typically at specific positions or sequences. Recent biochemical and structural data have shed new light on how RNase III enzymes catalyze dsRNA hydrolysis and how substrate specificity is achieved. A major theme emerging from these studies is that accessory domains present in different RNase III enzymes are the key determinants of substrate selectivity, which in turn dictates the specialized biological function of each type of RNase III protein.
Similar articles
- Structural basis for non-catalytic and catalytic activities of ribonuclease III.
Ji X. Ji X. Acta Crystallogr D Biol Crystallogr. 2006 Aug;62(Pt 8):933-40. doi: 10.1107/S090744490601153X. Epub 2006 Jul 18. Acta Crystallogr D Biol Crystallogr. 2006. PMID: 16855311 Review. - Ribonuclease III mechanisms of double-stranded RNA cleavage.
Nicholson AW. Nicholson AW. Wiley Interdiscip Rev RNA. 2014 Jan-Feb;5(1):31-48. doi: 10.1002/wrna.1195. Epub 2013 Sep 30. Wiley Interdiscip Rev RNA. 2014. PMID: 24124076 Free PMC article. Review. - Biochemical properties of Bacillus Calmette Guerin ribonuclease III.
Yang L, Wang YL, Dai JC, Liu M, Li X, Tang H. Yang L, et al. J Basic Microbiol. 2016 Apr;56(4):392-404. doi: 10.1002/jobm.201500360. Epub 2015 Dec 3. J Basic Microbiol. 2016. PMID: 26632143 - Noncatalytic assembly of ribonuclease III with double-stranded RNA.
Blaszczyk J, Gan J, Tropea JE, Court DL, Waugh DS, Ji X. Blaszczyk J, et al. Structure. 2004 Mar;12(3):457-66. doi: 10.1016/j.str.2004.02.004. Structure. 2004. PMID: 15016361 - A stepwise model for double-stranded RNA processing by ribonuclease III.
Gan J, Shaw G, Tropea JE, Waugh DS, Court DL, Ji X. Gan J, et al. Mol Microbiol. 2008 Jan;67(1):143-54. doi: 10.1111/j.1365-2958.2007.06032.x. Epub 2007 Nov 27. Mol Microbiol. 2008. PMID: 18047582
Cited by
- A non-canonical RNA silencing pathway promotes mRNA degradation in basal Fungi.
Trieu TA, Calo S, Nicolás FE, Vila A, Moxon S, Dalmay T, Torres-Martínez S, Garre V, Ruiz-Vázquez RM. Trieu TA, et al. PLoS Genet. 2015 Apr 13;11(4):e1005168. doi: 10.1371/journal.pgen.1005168. eCollection 2015 Apr. PLoS Genet. 2015. PMID: 25875805 Free PMC article. - MicroRNA biogenesis: regulating the regulators.
Finnegan EF, Pasquinelli AE. Finnegan EF, et al. Crit Rev Biochem Mol Biol. 2013 Jan-Feb;48(1):51-68. doi: 10.3109/10409238.2012.738643. Epub 2012 Nov 19. Crit Rev Biochem Mol Biol. 2013. PMID: 23163351 Free PMC article. Review. - Non-coding RNA derived from a conservative subtelomeric tandem repeat in chicken and Japanese quail somatic cells.
Trofimova I, Popova D, Vasilevskaya E, Krasikova A. Trofimova I, et al. Mol Cytogenet. 2014 Dec 23;7(1):102. doi: 10.1186/s13039-014-0102-7. eCollection 2014. Mol Cytogenet. 2014. PMID: 25610495 Free PMC article. - Information available at cut rates: structure and mechanism of ribonucleases.
Worrall JA, Luisi BF. Worrall JA, et al. Curr Opin Struct Biol. 2007 Feb;17(1):128-37. doi: 10.1016/j.sbi.2006.12.001. Epub 2006 Dec 26. Curr Opin Struct Biol. 2007. PMID: 17189683 Free PMC article. Review. - Escherichia coli YmdB regulates biofilm formation independently of its role as an RNase III modulator.
Kim T, Lee J, Kim KS. Kim T, et al. BMC Microbiol. 2013 Nov 24;13:266. doi: 10.1186/1471-2180-13-266. BMC Microbiol. 2013. PMID: 24267348 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases