Calculation of protein-ligand binding affinities - PubMed (original) (raw)
Review
Calculation of protein-ligand binding affinities
Michael K Gilson et al. Annu Rev Biophys Biomol Struct. 2007.
Abstract
Accurate methods of computing the affinity of a small molecule with a protein are needed to speed the discovery of new medications and biological probes. This paper reviews physics-based models of binding, beginning with a summary of the changes in potential energy, solvation energy, and configurational entropy that influence affinity, and a theoretical overview to frame the discussion of specific computational approaches. Important advances are reported in modeling protein-ligand energetics, such as the incorporation of electronic polarization and the use of quantum mechanical methods. Recent calculations suggest that changes in configurational entropy strongly oppose binding and must be included if accurate affinities are to be obtained. The linear interaction energy (LIE) and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) methods are analyzed, as are free energy pathway methods, which show promise and may be ready for more extensive testing. Ultimately, major improvements in modeling accuracy will likely require advances on multiple fronts, as well as continued validation against experiment.
Similar articles
- Estimates of ligand-binding affinities supported by quantum mechanical methods.
Söderhjelm P, Kongsted J, Genheden S, Ryde U. Söderhjelm P, et al. Interdiscip Sci. 2010 Mar;2(1):21-37. doi: 10.1007/s12539-010-0083-0. Epub 2010 Jan 28. Interdiscip Sci. 2010. PMID: 20640794 - Towards predictive ligand design with free-energy based computational methods?
Foloppe N, Hubbard R. Foloppe N, et al. Curr Med Chem. 2006;13(29):3583-608. doi: 10.2174/092986706779026165. Curr Med Chem. 2006. PMID: 17168725 - Importance of polar solvation and configurational entropy for design of antiretroviral drugs targeting HIV-1 protease.
Kar P, Lipowsky R, Knecht V. Kar P, et al. J Phys Chem B. 2013 May 16;117(19):5793-805. doi: 10.1021/jp3085292. Epub 2013 May 8. J Phys Chem B. 2013. PMID: 23614718 - Free energy calculations to estimate ligand-binding affinities in structure-based drug design.
Reddy MR, Reddy CR, Rathore RS, Erion MD, Aparoy P, Reddy RN, Reddanna P. Reddy MR, et al. Curr Pharm Des. 2014;20(20):3323-37. doi: 10.2174/13816128113199990604. Curr Pharm Des. 2014. PMID: 23947646 Review. - Binding Free Energy Calculation Using Quantum Mechanics Aimed for Drug Lead Optimization.
Cavasotto CN. Cavasotto CN. Methods Mol Biol. 2020;2114:257-268. doi: 10.1007/978-1-0716-0282-9_16. Methods Mol Biol. 2020. PMID: 32016898 Review.
Cited by
- Computational identification of _Vernonia cinerea_-derived phytochemicals as potential inhibitors of nonstructural protein 1 (NSP1) in dengue virus serotype-2.
Hossain MS, Hasnat S, Akter S, Mim MM, Tahcin A, Hoque M, Sutradhar D, Keya MAA, Sium NR, Hossain S, Masuma R, Rakib SH, Islam MA, Islam T, Bhattacharya P, Hoque MN. Hossain MS, et al. Front Pharmacol. 2024 Oct 15;15:1465827. doi: 10.3389/fphar.2024.1465827. eCollection 2024. Front Pharmacol. 2024. PMID: 39474614 Free PMC article. - Ensembling methods for protein-ligand binding affinity prediction.
Mohamed Abdul Cader J, Newton MAH, Rahman J, Mohamed Abdul Cader AJ, Sattar A. Mohamed Abdul Cader J, et al. Sci Rep. 2024 Oct 18;14(1):24447. doi: 10.1038/s41598-024-72784-3. Sci Rep. 2024. PMID: 39424851 Free PMC article. - Virtual Screening and Validation of Affinity DNA Functional Ligands for IgG Fc Segment.
Yang Q, Liu Z, Xu X, Wang J, Du B, Zhang P, Liu B, Mu X, Tong Z. Yang Q, et al. Int J Mol Sci. 2024 Aug 9;25(16):8681. doi: 10.3390/ijms25168681. Int J Mol Sci. 2024. PMID: 39201368 Free PMC article. - Impact of subtype C-specific amino acid variants on HIV-1 Tat-TAR interaction: insights from molecular modelling and dynamics.
Gotora PT, Brown K, Martin DR, van der Sluis R, Cloete R, Williams ME. Gotora PT, et al. Virol J. 2024 Jun 25;21(1):144. doi: 10.1186/s12985-024-02419-6. Virol J. 2024. PMID: 38918875 Free PMC article. - DEAttentionDTA: protein-ligand binding affinity prediction based on dynamic embedding and self-attention.
Chen X, Huang J, Shen T, Zhang H, Xu L, Yang M, Xie X, Yan Y, Yan J. Chen X, et al. Bioinformatics. 2024 Jun 3;40(6):btae319. doi: 10.1093/bioinformatics/btae319. Bioinformatics. 2024. PMID: 38897656 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources