Radioiodinated versus radiometal-labeled anti-carcinoembryonic antigen single-chain Fv-Fc antibody fragments: optimal pharmacokinetics for therapy - PubMed (original) (raw)

Comparative Study

Radioiodinated versus radiometal-labeled anti-carcinoembryonic antigen single-chain Fv-Fc antibody fragments: optimal pharmacokinetics for therapy

Vania Kenanova et al. Cancer Res. 2007.

Abstract

Antibody fragments with optimized pharmacokinetic profiles hold potential for detection and therapy of tumor malignancies. We studied the behavior of three anti-carcinoembryonic antigen (CEA) single-chain Fv-Fc (scFv-Fc) variants (I253A, H310A, and H310A/H435Q; Kabat numbering system) that exhibited differential serum persistence. Biodistribution studies done on CEA-positive tumor xenografted mice revealed that the 111In-labeled I253A fragment with the slowest clearance kinetics (T1/2beta, 27.7 h) achieved the highest tumor uptake (44.6% ID/g at 24 h), whereas the radiometal-labeled H310A/H435Q fragment with the most rapid elimination (T1/2beta, 7.05 h) reached a maximum of 28.0% ID/g at 12 h postinjection. The H310A protein was characterized by both intermediate serum half-life and tumor uptake. The 111In-based biodistribution studies showed that all three fragments were eliminated primarily through the liver, and hepatic radiometal activity correlated with the rate of fragment clearance. The 111In-labeled H310A/H435Q protein exhibited the highest liver uptake (23.5% ID/g at 24 h). Metabolism of the 125I-labeled scFv-Fc proteins resulted in low normal organ activity. Finally, the 125I/111In biodistribution data allowed for dose estimations, which suggest the 131I-labeled scFv-Fc H310A/H435Q as a promising candidate for radioimmunotherapy.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources