Restoration of p53 function leads to tumour regression in vivo - PubMed (original) (raw)
. 2007 Feb 8;445(7128):661-5.
doi: 10.1038/nature05541. Epub 2007 Jan 24.
Affiliations
- PMID: 17251932
- DOI: 10.1038/nature05541
Restoration of p53 function leads to tumour regression in vivo
Andrea Ventura et al. Nature. 2007.
Abstract
Tumorigenesis is a multi-step process that requires activation of oncogenes and inactivation of tumour suppressor genes. Mouse models of human cancers have recently demonstrated that continuous expression of a dominantly acting oncogene (for example, Hras, Kras and Myc) is often required for tumour maintenance; this phenotype is referred to as oncogene addiction. This concept has received clinical validation by the development of active anticancer drugs that specifically inhibit the function of oncoproteins such as BCR-ABL, c-KIT and EGFR. Identifying additional gene mutations that are required for tumour maintenance may therefore yield clinically useful targets for new cancer therapies. Although loss of p53 function is a common feature of human cancers, it is not known whether sustained inactivation of this or other tumour suppressor pathways is required for tumour maintenance. To explore this issue, we developed a Cre-loxP-based strategy to temporally control tumour suppressor gene expression in vivo. Here we show that restoring endogenous p53 expression leads to regression of autochthonous lymphomas and sarcomas in mice without affecting normal tissues. The mechanism responsible for tumour regression is dependent on the tumour type, with the main consequence of p53 restoration being apoptosis in lymphomas and suppression of cell growth with features of cellular senescence in sarcomas. These results support efforts to treat human cancers by way of pharmacological reactivation of p53.
Comment in
- Cancer biology: gone but not forgotten.
Sharpless NE, DePinho RA. Sharpless NE, et al. Nature. 2007 Feb 8;445(7128):606-7. doi: 10.1038/nature05567. Nature. 2007. PMID: 17251931 No abstract available.
Similar articles
- Sustained regression of tumors upon MYC inactivation requires p53 or thrombospondin-1 to reverse the angiogenic switch.
Giuriato S, Ryeom S, Fan AC, Bachireddy P, Lynch RC, Rioth MJ, van Riggelen J, Kopelman AM, Passegué E, Tang F, Folkman J, Felsher DW. Giuriato S, et al. Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16266-71. doi: 10.1073/pnas.0608017103. Epub 2006 Oct 20. Proc Natl Acad Sci U S A. 2006. PMID: 17056717 Free PMC article. - Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas.
Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, Cordon-Cardo C, Lowe SW. Xue W, et al. Nature. 2007 Feb 8;445(7128):656-60. doi: 10.1038/nature05529. Epub 2007 Jan 24. Nature. 2007. PMID: 17251933 Free PMC article. - Loss of p53 function at late stages of tumorigenesis confers ARF-dependent vulnerability to p53 reactivation therapy.
Klimovich B, Mutlu S, Schneikert J, Elmshäuser S, Klimovich M, Nist A, Mernberger M, Timofeev O, Stiewe T. Klimovich B, et al. Proc Natl Acad Sci U S A. 2019 Oct 29;116(44):22288-22293. doi: 10.1073/pnas.1910255116. Epub 2019 Oct 14. Proc Natl Acad Sci U S A. 2019. PMID: 31611375 Free PMC article. - In vivo analysis of p53 tumor suppressor function using genetically engineered mouse models.
Kenzelmann Broz D, Attardi LD. Kenzelmann Broz D, et al. Carcinogenesis. 2010 Aug;31(8):1311-8. doi: 10.1093/carcin/bgp331. Epub 2010 Jan 22. Carcinogenesis. 2010. PMID: 20097732 Free PMC article. Review. - Pharmacological reactivation of p53 as a strategy to treat cancer.
Zawacka-Pankau J, Selivanova G. Zawacka-Pankau J, et al. J Intern Med. 2015 Feb;277(2):248-259. doi: 10.1111/joim.12336. J Intern Med. 2015. PMID: 25495071 Review.
Cited by
- Irx3/5 define the cochlear sensory domain and regulate vestibular and cochlear sensory patterning in the mammalian inner ear.
Liu Y, Qin T, Weng X, Leung B, Hei So KK, Wang B, Feng W, Marsolais A, Josselyn S, Huang P, Fritzsch B, Hui CC, Sham MH. Liu Y, et al. bioRxiv [Preprint]. 2024 Oct 26:2024.10.24.620152. doi: 10.1101/2024.10.24.620152. bioRxiv. 2024. PMID: 39484413 Free PMC article. Preprint. - The small inhibitor WM-1119 effectively targets KAT6A-rearranged AML, but not KMT2A-rearranged AML, despite shared KAT6 genetic dependency.
Sheridan M, Maqbool MA, Largeot A, Clayfield L, Xu J, Moncaut N, Sellers R, Whittle J, Paggetti J, Iqbal M, Aucagne R, Delva L, Baker SM, Lie-A-Ling M, Kouskoff V, Lacaud G. Sheridan M, et al. J Hematol Oncol. 2024 Oct 8;17(1):91. doi: 10.1186/s13045-024-01610-0. J Hematol Oncol. 2024. PMID: 39380002 Free PMC article. - Structural perturbation of chromatin domains with multiple developmental regulators can severely impact gene regulation and development.
Chakraborty S, Wenzlitschke N, Anderson MJ, Eraso A, Baudic M, Thompson JJ, Evans AA, Shatford-Adams LM, Chari R, Awasthi P, Dale RK, Lewandoski M, Petros TJ, Rocha PP. Chakraborty S, et al. bioRxiv [Preprint]. 2024 Aug 3:2024.08.03.606480. doi: 10.1101/2024.08.03.606480. bioRxiv. 2024. PMID: 39372737 Free PMC article. Preprint. - Rapid increase of C/EBPα p42 induces growth arrest of acute myeloid leukemia (AML) cells by Cop1 deletion in Trib1-expressing AML.
Sunami Y, Yoshino S, Yamazaki Y, Iwamoto T, Nakamura T. Sunami Y, et al. Leukemia. 2024 Oct 4. doi: 10.1038/s41375-024-02430-4. Online ahead of print. Leukemia. 2024. PMID: 39367171 - Retention of ES cell-derived 129S genome drives NLRP1 hypersensitivity and transcriptional deregulation in Nlrp3tm1Flv mice.
Weiss FD, Alvarez Y, Shakeri F, Sahu A, Leka P, Dernst A, Rollheiser J, Vasconcelos M, Geraci A, Duthie F, Stahl R, Lee HE, Gellner AK, Buness A, Latz E, Meissner F. Weiss FD, et al. Cell Death Differ. 2024 Sep 17. doi: 10.1038/s41418-024-01379-2. Online ahead of print. Cell Death Differ. 2024. PMID: 39289506
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous