Lipid-based nanoparticles for nucleic acid delivery - PubMed (original) (raw)
Review
Lipid-based nanoparticles for nucleic acid delivery
Weijun Li et al. Pharm Res. 2007 Mar.
Abstract
Lipid-based colloidal particles have been extensively studied as systemic gene delivery carriers. The topic that we would like to emphasize is the formulation/assembly of lipid-based nanoparticles (NP) with diameter under 100 nm for delivering nucleic acid in vivo. NP are different from cationic lipid-nucleic acid complexes (lipoplexes) and are vesicles composed of lipids and encapsulated nucleic acids with a diameter less than 100 nm. The diameter of the NP is an important attribute to enable NP to overcome the various in vivo barriers for systemic gene delivery such as: the blood components, reticuloendothelial system (RES) uptake, tumor access, extracellular matrix components, and intracellular barriers. The major formulation factors that impact the diameter and encapsulation efficiency of DNA-containing NP include the lipid composition, nucleic acid to lipid ratio and formulation method. The particle assembly step is a critical one to make NP suitable for in vivo gene delivery. NP are often prepared using a dialysis method either from an aqueous-detergent or aqueous-organic solvent mixture. The resulting particles have diameters about 100 nm and nucleic acid encapsulation ratios are >80%. Additional components can then be added to the particle after it is formed. This ordered assembly strategy enables one to optimize the particle physico-chemical attributes to devise a biocompatible particle with increased gene transfer efficacy in vivo. The components included in the sequentially assembled NP include: poly(ethylene glycol) (PEG)-shielding to improve the particle pharmacokinetic behavior, a targeting ligand to facilitate the particle-cell recognition and in some case a bioresponsive lipid or pH-triggered polymer to enhance nucleic acid release and intracellular trafficking. A number of groups have observed that a PEG-shielded NP is a robust and modestly effective system for systemic gene or small interfering RNA (siRNA) delivery.
Similar articles
- Characterization and comparison of two novel nanosystems associated with siRNA for cellular therapy.
André EM, Pensado A, Resnier P, Braz L, Rosa da Costa AM, Passirani C, Sanchez A, Montero-Menei CN. André EM, et al. Int J Pharm. 2016 Jan 30;497(1-2):255-67. doi: 10.1016/j.ijpharm.2015.11.020. Epub 2015 Nov 23. Int J Pharm. 2016. PMID: 26617318 - Cationic Lipid-Based Nucleic Acid Vectors.
Jubeli E, Goldring WP, Pungente MD. Jubeli E, et al. Methods Mol Biol. 2016;1445:19-32. doi: 10.1007/978-1-4939-3718-9_2. Methods Mol Biol. 2016. PMID: 27436310 - Structure and kinetics of lipid-nucleic acid complexes.
Dan N, Danino D. Dan N, et al. Adv Colloid Interface Sci. 2014 Mar;205:230-9. doi: 10.1016/j.cis.2014.01.013. Epub 2014 Jan 28. Adv Colloid Interface Sci. 2014. PMID: 24529969 Review. - Cationic liposome-nucleic acid nanoparticle assemblies with applications in gene delivery and gene silencing.
Majzoub RN, Ewert KK, Safinya CR. Majzoub RN, et al. Philos Trans A Math Phys Eng Sci. 2016 Jul 28;374(2072):20150129. doi: 10.1098/rsta.2015.0129. Philos Trans A Math Phys Eng Sci. 2016. PMID: 27298431 Free PMC article. Review.
Cited by
- Derivation of extraembryonic endoderm stem (XEN) cells from mouse embryos and embryonic stem cells.
Niakan KK, Schrode N, Cho LT, Hadjantonakis AK. Niakan KK, et al. Nat Protoc. 2013 Jun;8(6):1028-41. doi: 10.1038/nprot.2013.049. Epub 2013 May 2. Nat Protoc. 2013. PMID: 23640167 Free PMC article. - Enabling Precision Medicine with CRISPR-Cas Genome Editing Technology: A Translational Perspective.
Ilahibaks NF, Hulsbos MJ, Lei Z, Vader P, Sluijter JPG. Ilahibaks NF, et al. Adv Exp Med Biol. 2023;1396:315-339. doi: 10.1007/978-981-19-5642-3_20. Adv Exp Med Biol. 2023. PMID: 36454475 - mRNA vaccine delivery using lipid nanoparticles.
Reichmuth AM, Oberli MA, Jaklenec A, Langer R, Blankschtein D. Reichmuth AM, et al. Ther Deliv. 2016;7(5):319-34. doi: 10.4155/tde-2016-0006. Ther Deliv. 2016. PMID: 27075952 Free PMC article. Review. - Improvement of DNA Vector Delivery of DOTAP Lipoplexes by Short-Chain Aminolipids.
Buck J, Mueller D, Mettal U, Ackermann M, Grisch-Chan HM, Thöny B, Zumbuehl A, Huwyler J, Witzigmann D. Buck J, et al. ACS Omega. 2020 Sep 15;5(38):24724-24732. doi: 10.1021/acsomega.0c03303. eCollection 2020 Sep 29. ACS Omega. 2020. PMID: 33015490 Free PMC article. - Scope and challenges of nanoparticle-based mRNA delivery in cancer treatment.
Karim ME, Haque ST, Al-Busaidi H, Bakhtiar A, Tha KK, Holl MMB, Chowdhury EH. Karim ME, et al. Arch Pharm Res. 2022 Dec;45(12):865-893. doi: 10.1007/s12272-022-01418-x. Epub 2022 Nov 24. Arch Pharm Res. 2022. PMID: 36422795 Free PMC article. Review.
References
- Bioconjug Chem. 2000 Jan-Feb;11(1):104-12 - PubMed
- Biochim Biophys Acta. 2000 Sep 29;1468(1-2):239-52 - PubMed
- Biophys J. 1997 Dec;73(6):3089-111 - PubMed
- Nucleic Acids Res. 2000 Aug 1;28(15):2986-92 - PubMed
- Biochim Biophys Acta. 2005 May 20;1669(2):155-63 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous