Postmitotic death is the fate of constitutively proliferating cells in the subependymal layer of the adult mouse brain - PubMed (original) (raw)
Postmitotic death is the fate of constitutively proliferating cells in the subependymal layer of the adult mouse brain
C M Morshead et al. J Neurosci. 1992 Jan.
Abstract
The early development of the mammalian forebrain involves the massive proliferation of the ventricular zone cells lining the lateral ventricles. A remnant of this highly proliferative region persists into adult life, where it is known as the subependymal layer. We examined the proliferation kinetics and fates of the mitotically active cells in the subependyma of the adult mouse. The medial edge, the lateral edge, and the dorsolateral corner of the subependymal layer of the rostral portion of the lateral ventricle each contained mitotically active cells, but the dorsolateral region had the highest percentage of bromodeoxyuridine (BrdU)-labeled cells per unit area. Repeated injections of BrdU over 14 hr revealed a proliferation curve for the dorsolateral population with a growth fraction of 33%, indicating that 33% of the cells in this subependymal region make up the proliferating population. The total cell cycle time in this population was approximately 12.7 hr, with an S-phase of 4.2 hr. To examine the fate of these proliferating cells, we injected low concentrations of a replication-deficient, recombinant retrovirus directly into the lateral ventricles of adult mice for uptake by mitotically active subependymal cells. Regardless of the survival time postinjection (10 hr, 1 d, 2 d, or 8 d), the number of retrovirally labeled cells per clone remained the same (1 or 2 cells/clone). This suggests that one of the progeny from each cell division dies. Moreover, the clones remained confined to the subependyma and labeled cells were not seen in the surrounding brain tissue. Thus, while 33% of the dorsolateral subependymal cells continue to proliferate in adult life, the fate of the postmitotic progeny is death.
Similar articles
- A cell-survival factor (N-acetyl-L-cysteine) alters the in vivo fate of constitutively proliferating subependymal cells in the adult forebrain.
Morshead CM, van der Kooy D. Morshead CM, et al. J Neurobiol. 2000 Feb 15;42(3):338-46. doi: 10.1002/(sici)1097-4695(20000215)42:3<338::aid-neu5>3.0.co;2-k. J Neurobiol. 2000. PMID: 10645973 - Migrational analysis of the constitutively proliferating subependyma population in adult mouse forebrain.
Craig CG, D'sa R, Morshead CM, Roach A, van der Kooy D. Craig CG, et al. Neuroscience. 1999;93(3):1197-206. doi: 10.1016/s0306-4522(99)00232-8. Neuroscience. 1999. PMID: 10473285 - In vivo clonal analyses reveal the properties of endogenous neural stem cell proliferation in the adult mammalian forebrain.
Morshead CM, Craig CG, van der Kooy D. Morshead CM, et al. Development. 1998 Jun;125(12):2251-61. doi: 10.1242/dev.125.12.2251. Development. 1998. PMID: 9584124 - Adult mammalian forebrain ependymal and subependymal cells demonstrate proliferative potential, but only subependymal cells have neural stem cell characteristics.
Chiasson BJ, Tropepe V, Morshead CM, van der Kooy D. Chiasson BJ, et al. J Neurosci. 1999 Jun 1;19(11):4462-71. doi: 10.1523/JNEUROSCI.19-11-04462.1999. J Neurosci. 1999. PMID: 10341247 Free PMC article. - [Stem cells of mammalian brain: biology of the stem cells in vivo and in vitro].
Viktorov IV. Viktorov IV. Izv Akad Nauk Ser Biol. 2001 Nov-Dec;(6):646-55. Izv Akad Nauk Ser Biol. 2001. PMID: 15926330 Review. Russian.
Cited by
- Age-dependent regional changes in the rostral migratory stream.
Mobley AS, Bryant AK, Richard MB, Brann JH, Firestein SJ, Greer CA. Mobley AS, et al. Neurobiol Aging. 2013 Jul;34(7):1873-81. doi: 10.1016/j.neurobiolaging.2013.01.015. Epub 2013 Feb 15. Neurobiol Aging. 2013. PMID: 23419702 Free PMC article. - Cell cycle and lineage progression of neural progenitors in the ventricular-subventricular zones of adult mice.
Ponti G, Obernier K, Guinto C, Jose L, Bonfanti L, Alvarez-Buylla A. Ponti G, et al. Proc Natl Acad Sci U S A. 2013 Mar 12;110(11):E1045-54. doi: 10.1073/pnas.1219563110. Epub 2013 Feb 21. Proc Natl Acad Sci U S A. 2013. PMID: 23431204 Free PMC article. - Phenotypic and functional characterization of adult brain neuropoiesis.
Scheffler B, Walton NM, Lin DD, Goetz AK, Enikolopov G, Roper SN, Steindler DA. Scheffler B, et al. Proc Natl Acad Sci U S A. 2005 Jun 28;102(26):9353-8. doi: 10.1073/pnas.0503965102. Epub 2005 Jun 16. Proc Natl Acad Sci U S A. 2005. PMID: 15961540 Free PMC article. - Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain.
Gage FH, Coates PW, Palmer TD, Kuhn HG, Fisher LJ, Suhonen JO, Peterson DA, Suhr ST, Ray J. Gage FH, et al. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11879-83. doi: 10.1073/pnas.92.25.11879. Proc Natl Acad Sci U S A. 1995. PMID: 8524867 Free PMC article. - Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus.
Pencea V, Bingaman KD, Wiegand SJ, Luskin MB. Pencea V, et al. J Neurosci. 2001 Sep 1;21(17):6706-17. doi: 10.1523/JNEUROSCI.21-17-06706.2001. J Neurosci. 2001. PMID: 11517260 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources